Home
/
Blog
/
Developer Insights
/
14 Incredible women who've reshaped the Data Science / Analytics Industry

14 Incredible women who've reshaped the Data Science / Analytics Industry

Author
Dhanya Menon
Calendar Icon
December 16, 2016
Timer Icon
3 min read
Share

Explore this post with:

Times are changing and have been for a while now. In the world of STEM, women are no longer considered a “bad fit,” which is easily proved by the amazing number of brilliant women in the field today. Women are just as interested in finding out how things work, extracting insight from data, problem-solving, and helping businesses make the right decisions. Staggering amounts of data and knowing that it will only grow has paved the way for boundless opportunities for jobs related to data science, across both genders.

Disappointing Statistics in Favor

Despite being named the sexiest job of the century, data science seems to have few takers among the women folk. Following are some interesting stats about women in the technology domain:

  • The American Association of University Women found that the percentage of women in math and computational jobs fell from 35% in 1990 to 26% in 2013.
  • BetterBuys’ collated report shows that women make up about 26% of data professionals, with 39% researcher roles, 28% in creative roles, 18% in business management roles, and 13% in developer roles.
  • In 2014, women held only 13% of the Chief Information Officer and 25% of Chief Data Officer positions. What is worse is that research found “women were two times more likely than men to quit high-tech positions.”

So, what’s stopping more women from getting into data science and analytics?

We don’t want people talking about gender gap in the world of technology and analytics anymore. Seriously, there is no conspiracy to keep women out of this typically male-dominated sphere. We need diversity in the boardroom, like now.

Machine learning challenge, ML challenge

Why are women not "gung-ho" about such an exciting field?

Women often face challenges in the form of stereotypes and condescension, especially in developing countries like India, when trying to prove their worth. Cultural perception affects their self-confidence and chances of growth. You find women struggling to find work-life balance. Battling these undercurrents and the lack of adequate support and encouragement at home and workplace are sources of stress many talented women are choosing to do without.

Not an ideal situation…

But take heart, aspiring women data scientists. This is what Evenbrite’s Senior Data Scientist, Vesela Gateva, says:

Once you have a very genuine curiosity in a quantitative field or anything science-related, let your curiosity be your main guidance. You shouldn’t think that you’re a woman. I never aspired to be a data scientist. It’s a very recent term. I just ended up being one. All I knew was that I wanted to apply my quantitative skills, solving interesting problems. Women in general tend to give themselves less credit than they deserve. What women should know is that once they have the curiosity, and the basic fundamentals of probability and statistics, computer science, and machine learning, they can figure out the rest on their own.

Gender shouldn’t limit accomplishments, and it certainly shouldn’t define a person’s identity.

14 Women who've hit the stereotype out of the park

What aspiring women data scientists need are to look to bright women who have defied odds to rise to leadership positions in the field of analytics. No point in whining about lack of female representation if you are going to contribute, is there?

Let's appreciate these women for their work and incessant dedication which has helped millions of people around the world to inspire, learn and rise in their respective careers.

Corinna Cortes, Google Research

She needs no introduction to people who in the world of Machine Learning. Corinna Cortes is the head of Google Research (NY), prior to which she was a distinguished researcher for a decade at AT&T Bell Labs. Her development of the algorithm, Support Vector Machines, fetched her the Paris Kanellakis Theory and Practice Award in 2008. She received her PhD in Computer Science in 1993 from the University of Rochester (NY) and has an MS in Physics from the University of Copenhagen. This amazing mother of two is a competitive runner as well. Read her latest tweets here.

Daphne Koller, Co-founder, Coursera

Israeli-American Daphne Koller is a leading expert in the field of machine learning, with special focus on probabilistic graphical models. She is the Chief Computing Officer at Calico Labs. Daphne is also the co-founder of the popular online education platform Coursera. She was a Stanford University professor of Computer Science for nearly two decades. Daphne Koller earned her PhD from Stanford, BS and MS from Hebrew University of Jerusalem, and has done her Post-doctoral research at UCLA. To view her many achievements, go here. When she’s not immersed in her work, you can find her spending time with her daughter or unwinding to music.

Adele Cutler, Random Forest Algorithm Co-Developer

Random Forests (a trademarked statistical classifier) co-developer Adele Cutler has a PhD from University of California, Berkeley, and a math degree from the University of Auckland. She’s been a statistics professor at Utah State University for almost three decades and continues her research in data mining and decision trees. She says, “As statisticians, what we’re really trying to do is think of better ways to get information out of data.” Adele Cutler has varied interests apart from math and stats, including spending time with her family in Taupo and Edinburgh, taking holidays, beading, and knitting. You can find more about her here.

Jenn Wortman Vaughan, Microsoft Research

Jennifer Vaughan is a Senior Researcher at NYC-based Microsoft Research. She is interested in learning models and algorithms related to data aggregation. She received her PhD in 2009 in Computer and Information Science from the University of Pennsylvania, a Masters from Stanford in Computer Science, and a Bachelors in Computer Science from Boston University. She previously worked as an Assistant Professor (CS) in UCLA and was a Harvard University Computing Innovation Fellow. She has a handful of prestigious awards to her name, including a National Science Foundation CAREER award and a Presidential Early Career Award for Scientists and Engineers. In 2006, Jenn co-founded the Annual Workshop for Women in Machine Learning. If you want to know about this rising star, go to here website.

Erin LeDell, Machine Learning Scientist, H2O.ai

California-based H2O.ai Machine Learning scientist, Erin LeDell has a doctorate in “Biostatistics and the Designated Emphasis in Computational Science and Engineering” from the University of California, Berkeley. She has a B.S. and M.A. in Mathematics. Her earlier work history includes working as the Principal Data Scientist at Wise.io and Marvin Mobile Security. Erin is also the founder of DataScientific, Inc. She has co-authored Subsemble: An Ensemble Method for Combining Subset-Specific Algorithm Fits. She is a co-founder of R-Ladies Global, an organization to encourage gender diversity in the R stats community. You can find Erin LeDell here.

Jennifer Bryan, Associate Professor Statistics, UBC

Jennifer Bryan is an Associate Professor, Statistics & Michael Smith Labs, at the University of British Columbia. She's a biostatistician specializing in genomics, and she enjoys statistical computing and data analysis. She has a BA in Economics from Yale and a doctoral degree from the University of California, Berkeley. She takes a popular introductory course in R. Look at her Twitter feed here.

Hilary Mason, Founder, Fast Forward Labs

In her own words, “I love data and cheeseburgers!” Based in New York, Hilary Mason is the founder of Fast Forward Labs, a machine intelligence research company, and the Data Scientist in Residence at Accel. Her magic doesn’t end there. She co-hosts DataGotham, is a member of NYCResistor, and co-founded of HackNY. Apart from being featured in top publications like the Scientific American, she has received the TechFellows Engineering Leadership award and was on the Forbes 40 under 40 Ones to Watch list. She has co-authored Data Driven: Creating a Data Culture. For inspiration, you should look at her LinkedIn profile.

Radhika Kulkarni, Vice President, Advanced Analytics R&D, SAS

Based in Durham, NC, Radhika Kulkarni is the Vice President, Advanced Analytics R&D, at SAS Institute Inc. She has a Masters in Mathematics from IIT-Delhi and a PhD in Operations Research from Cornell University. In her 30-year career with SAS, one of the foremost optimization software vendors, she has received many accolades—she is a SAS CEO Award of Excellence winner and chosen as one of the 100 Diverse Corporate Leaders in STEM by STEMconnector. She loves spending time with her three kids, and is very social. In her own words, “I'm well known to be the party animal.” Check out here tweets here.

Alice Zheng, Senior Manager, Amazon

Alice Zheng is a Senior Manager of Applied Science at Amazon. She heads the optimization team on Amazon's Ad Platform. She was a Microsoft researcher for six years before her stint as the Director of Data Science at Dato. Her focus is on building scalable models in Machine Learning. She has undergraduate degrees in Computer Science and Math and a doctoral degree in electrical engineering from the University of California, Berkeley. Alice Zheng has written two books in the field of data science. She says, “My research focuses on easing the dependence on expertise by making learning algorithms more automated, their outputs more interpretable, and the labeling tasks simpler.” Look at her LinkedIn profile to read more interesting things about her.

Charlotte Wickham, Assistant Professor Statistics, OSU

Charlotte Wickham works as an Assistant Professor of Statistics at the Oregon State University. An R specialist, she creates courseware for Data Camp. She has an Undergraduate degree in Statistics from the University of Auckland and a PhD in Statistics from the University of California, Berkeley. You can visit her website for more information.

Monica Rogati, Former Senior Data Scientist, LinkedIn

Former VP of Data at Jawbone and LinkedIn senior data scientist, Monica Rogati is now an independent data science advisor. Her description on Medium is quite apt: Turning data into products and stories. Based in Sunnyvale, California, she has a PhD in Computer Science from the Carnegie Mellon University and a B.S. in computer science from the University of New Mexico. Her expertise lies in applied machine learning, text mining, and recommender systems. From wearable computing to developing a system to match a job to a candidate, she is an ace at it all. Her LinkedIn profile is chock-full of achievements. You can also follow her at @mrogati.

Alice Daish, Data Scientist, British Museum

Alice Daish is a Data Scientist at the British Museum and a co-Founder of R-Ladies Global. She says, “I love data, R, science and innovation.” Her interests include data analysis, data visualization, predictive modelling, data communication, mentoring, and gender diversity in STEM.S he has a BSc. in Conservation Biology & Ecology from the University of Exeter and an MSc. in Quantitative Biology from Imperial College London. For a more detailed record of her projects and publications, go here. Follow Alice!

Amy O'Connor, Big Data Evangelist, Cloudera

Amy O'Connor is a Big Data evangelist at Cloudera. Prior to this, she was the Senior Director of the Big Data group at Nokia, and prior to that she was Senior Director of Strategy at Sun Microsystems. She describes herself as “a geek in high heels.” Amy O'Connor was on the Information Management’s “10 Big Data Experts to Know” in 2015. She has a BS in Electrical Engineering from the University of Connecticut and an MBA from Northeastern University. Follow her here.

Julia Evans, Machine Learning Engineer, Stripe

Montreal-based Julia Evans says “I love using serious systems in silly ways.” She has undergraduate and graduate degrees in Mathematics and Computer Science from McGill University. She works as a Machine Learning engineer at Stripe. She is passionate about programming and puts events together for women with similar interests. You can read for yourself here. Follow her interesting tweets here.

Women have great communication skills—a necessary skill when you need to tell decision makers what the results of the data analysis are. They are collaborative by nature—a key skill when people from different fields work together. They can think differently and tackle assumptions—vital skills when coupled with business acumen, stats, math, computer science, modeling, and analytical expertise. Admittedly men and women think differently. But that is what analysis is about, isn’t it? Different perspectives?

Like machine learning expert Claudia Perlich, Chief Scientist at Dstillery, said,

“Ultimately, data science is another technical field where women remain statistically a minority, but I do not believe that we need to force the issue or “fight” for a higher female quota. I want to come to work and do what I love and be recognized for what I bring to the table and not waste even one thought on the fact that I am female.”

So there really is no excuse for women to not enter this fascinating world of Data Science is there? Women just need to recognize that they have so much to bring to the table.

Subscribe to The HackerEarth Blog

Get expert tips, hacks, and how-tos from the world of tech recruiting to stay on top of your hiring!

Author
Dhanya Menon
Calendar Icon
December 16, 2016
Timer Icon
3 min read
Share

Hire top tech talent with our recruitment platform

Access Free Demo
Related reads

Discover more articles

Gain insights to optimize your developer recruitment process.

The Mobile Dev Hiring Landscape Just Changed

Revolutionizing Mobile Talent Hiring: The HackerEarth Advantage

The demand for mobile applications is exploding, but finding and verifying developers with proven, real-world skills is more difficult than ever. Traditional assessment methods often fall short, failing to replicate the complexities of modern mobile development.

Introducing a New Era in Mobile Assessment

At HackerEarth, we're closing this critical gap with two groundbreaking features, seamlessly integrated into our Full Stack IDE:

Article content

Now, assess mobile developers in their true native environment. Our enhanced Full Stack questions now offer full support for both Java and Kotlin, the core languages powering the Android ecosystem. This allows you to evaluate candidates on authentic, real-world app development skills, moving beyond theoretical knowledge to practical application.

Article content

Say goodbye to setup drama and tool-switching. Candidates can now build, test, and debug Android and React Native applications directly within the browser-based IDE. This seamless, in-browser experience provides a true-to-life evaluation, saving valuable time for both candidates and your hiring team.

Assess the Skills That Truly Matter

With native Android support, your assessments can now delve into a candidate's ability to write clean, efficient, and functional code in the languages professional developers use daily. Kotlin's rapid adoption makes proficiency in it a key indicator of a forward-thinking candidate ready for modern mobile development.

Breakup of Mobile development skills ~95% of mobile app dev happens through Java and Kotlin
This chart illustrates the importance of assessing proficiency in both modern (Kotlin) and established (Java) codebases.

Streamlining Your Assessment Workflow

The integrated mobile emulator fundamentally transforms the assessment process. By eliminating the friction of fragmented toolchains and complex local setups, we enable a faster, more effective evaluation and a superior candidate experience.

Old Fragmented Way vs. The New, Integrated Way
Visualize the stark difference: Our streamlined workflow removes technical hurdles, allowing candidates to focus purely on demonstrating their coding and problem-solving abilities.

Quantifiable Impact on Hiring Success

A seamless and authentic assessment environment isn't just a convenience, it's a powerful catalyst for efficiency and better hiring outcomes. By removing technical barriers, candidates can focus entirely on demonstrating their skills, leading to faster submissions and higher-quality signals for your recruiters and hiring managers.

A Better Experience for Everyone

Our new features are meticulously designed to benefit the entire hiring ecosystem:

For Recruiters & Hiring Managers:

  • Accurately assess real-world development skills.
  • Gain deeper insights into candidate proficiency.
  • Hire with greater confidence and speed.
  • Reduce candidate drop-off from technical friction.

For Candidates:

  • Enjoy a seamless, efficient assessment experience.
  • No need to switch between different tools or manage complex setups.
  • Focus purely on showcasing skills, not environment configurations.
  • Work in a powerful, professional-grade IDE.

Unlock a New Era of Mobile Talent Assessment

Stop guessing and start hiring the best mobile developers with confidence. Explore how HackerEarth can transform your tech recruiting.

Vibe Coding: Shaping the Future of Software

A New Era of Code

Vibe coding is a new method of using natural language prompts and AI tools to generate code. I have seen firsthand that this change makes software more accessible to everyone. In the past, being able to produce functional code was a strong advantage for developers. Today, when code is produced quickly through AI, the true value lies in designing, refining, and optimizing systems. Our role now goes beyond writing code; we must also ensure that our systems remain efficient and reliable.

From Machine Language to Natural Language

I recall the early days when every line of code was written manually. We progressed from machine language to high-level programming, and now we are beginning to interact with our tools using natural language. This development does not only increase speed but also changes how we approach problem solving. Product managers can now create working demos in hours instead of weeks, and founders have a clearer way of pitching their ideas with functional prototypes. It is important for us to rethink our role as developers and focus on architecture and system design rather than simply on typing c

The Promise and the Pitfalls

I have experienced both sides of vibe coding. In cases where the goal was to build a quick prototype or a simple internal tool, AI-generated code provided impressive results. Teams have been able to test new ideas and validate concepts much faster. However, when it comes to more complex systems that require careful planning and attention to detail, the output from AI can be problematic. I have seen situations where AI produces large volumes of code that become difficult to manage without significant human intervention.

AI-powered coding tools like GitHub Copilot and AWS’s Q Developer have demonstrated significant productivity gains. For instance, at the National Australia Bank, it’s reported that half of the production code is generated by Q Developer, allowing developers to focus on higher-level problem-solving . Similarly, platforms like Lovable or Hostinger Horizons enable non-coders to build viable tech businesses using natural language prompts, contributing to a shift where AI-generated code reduces the need for large engineering teams. However, there are challenges. AI-generated code can sometimes be verbose or lack the architectural discipline required for complex systems. While AI can rapidly produce prototypes or simple utilities, building large-scale systems still necessitates experienced engineers to refine and optimize the code.​

The Economic Impact

The democratization of code generation is altering the economic landscape of software development. As AI tools become more prevalent, the value of average coding skills may diminish, potentially affecting salaries for entry-level positions. Conversely, developers who excel in system design, architecture, and optimization are likely to see increased demand and compensation.​
Seizing the Opportunity

Vibe coding is most beneficial in areas such as rapid prototyping and building simple applications or internal tools. It frees up valuable time that we can then invest in higher-level tasks such as system architecture, security, and user experience. When used in the right context, AI becomes a helpful partner that accelerates the development process without replacing the need for skilled engineers.

This is revolutionizing our craft, much like the shift from machine language to assembly to high-level languages did in the past. AI can churn out code at lightning speed, but remember, “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” Use AI for rapid prototyping, but it’s your expertise that transforms raw output into robust, scalable software. By honing our skills in design and architecture, we ensure our work remains impactful and enduring. Let’s continue to learn, adapt, and build software that stands the test of time.​

Ready to streamline your recruitment process? Get a free demo to explore cutting-edge solutions and resources for your hiring needs.

Guide to Conducting Successful System Design Interviews in 2025

What is Systems Design?

Systems Design is an all encompassing term which encapsulates both frontend and backend components harmonized to define the overall architecture of a product.

Designing robust and scalable systems requires a deep understanding of application, architecture and their underlying components like networks, data, interfaces and modules.

Systems Design, in its essence, is a blueprint of how software and applications should work to meet specific goals. The multi-dimensional nature of this discipline makes it open-ended – as there is no single one-size-fits-all solution to a system design problem.

What is a System Design Interview?

Conducting a System Design interview requires recruiters to take an unconventional approach and look beyond right or wrong answers. Recruiters should aim for evaluating a candidate’s ‘systemic thinking’ skills across three key aspects:

How they navigate technical complexity and navigate uncertainty
How they meet expectations of scale, security and speed
How they focus on the bigger picture without losing sight of details

This assessment of the end-to-end thought process and a holistic approach to problem-solving is what the interview should focus on.

What are some common topics for a System Design Interview

System design interview questions are free-form and exploratory in nature where there is no right or best answer to a specific problem statement. Here are some common questions:

How would you approach the design of a social media app or video app?

What are some ways to design a search engine or a ticketing system?

How would you design an API for a payment gateway?

What are some trade-offs and constraints you will consider while designing systems?

What is your rationale for taking a particular approach to problem solving?

Usually, interviewers base the questions depending on the organization, its goals, key competitors and a candidate’s experience level.

For senior roles, the questions tend to focus on assessing the computational thinking, decision making and reasoning ability of a candidate. For entry level job interviews, the questions are designed to test the hard skills required for building a system architecture.

The Difference between a System Design Interview and a Coding Interview

If a coding interview is like a map that takes you from point A to Z – a systems design interview is like a compass which gives you a sense of the right direction.

Here are three key difference between the two:

Coding challenges follow a linear interviewing experience i.e. candidates are given a problem and interaction with recruiters is limited. System design interviews are more lateral and conversational, requiring active participation from interviewers.

Coding interviews or challenges focus on evaluating the technical acumen of a candidate whereas systems design interviews are oriented to assess problem solving and interpersonal skills.

Coding interviews are based on a right/wrong approach with ideal answers to problem statements while a systems design interview focuses on assessing the thought process and the ability to reason from first principles.

How to Conduct an Effective System Design Interview

One common mistake recruiters make is that they approach a system design interview with the expectations and preparation of a typical coding interview.
Here is a four step framework technical recruiters can follow to ensure a seamless and productive interview experience:

Step 1: Understand the subject at hand

  • Develop an understanding of basics of system design and architecture
  • Familiarize yourself with commonly asked systems design interview questions
  • Read about system design case studies for popular applications
  • Structure the questions and problems by increasing magnitude of difficulty

Step 2: Prepare for the interview

  • Plan the extent of the topics and scope of discussion in advance
  • Clearly define the evaluation criteria and communicate expectations
  • Quantify constraints, inputs, boundaries and assumptions
  • Establish the broader context and a detailed scope of the exercise

Step 3: Stay actively involved

  • Ask follow-up questions to challenge a solution
  • Probe candidates to gauge real-time logical reasoning skills
  • Make it a conversation and take notes of important pointers and outcomes
  • Guide candidates with hints and suggestions to steer them in the right direction

Step 4: Be a collaborator

  • Encourage candidates to explore and consider alternative solutions
  • Work with the candidate to drill the problem into smaller tasks
  • Provide context and supporting details to help candidates stay on track
  • Ask follow-up questions to learn about the candidate’s experience

Technical recruiters and hiring managers should aim for providing an environment of positive reinforcement, actionable feedback and encouragement to candidates.

Evaluation Rubric for Candidates

Facilitate Successful System Design Interview Experiences with FaceCode

FaceCode, HackerEarth’s intuitive and secure platform, empowers recruiters to conduct system design interviews in a live coding environment with HD video chat.

FaceCode comes with an interactive diagram board which makes it easier for interviewers to assess the design thinking skills and conduct communication assessments using a built-in library of diagram based questions.

With FaceCode, you can combine your feedback points with AI-powered insights to generate accurate, data-driven assessment reports in a breeze. Plus, you can access interview recordings and transcripts anytime to recall and trace back the interview experience.

Learn how FaceCode can help you conduct system design interviews and boost your hiring efficiency.

Top Products

Explore HackerEarth’s top products for Hiring & Innovation

Discover powerful tools designed to streamline hiring, assess talent efficiently, and run seamless hackathons. Explore HackerEarth’s top products that help businesses innovate and grow.
Frame
Hackathons
Engage global developers through innovation
Arrow
Frame 2
Assessments
AI-driven advanced coding assessments
Arrow
Frame 3
FaceCode
Real-time code editor for effective coding interviews
Arrow
Frame 4
L & D
Tailored learning paths for continuous assessments
Arrow
Get A Free Demo