Home
/
Blog
/
Tech Tutorials
/
Getting started: Python Decorators

Getting started: Python Decorators

Author
Ritesh Agrawal
Calendar Icon
December 15, 2016
Timer Icon
3 min read
Share

Explore this post with:

This post will help you get started with Python decorators through some real life examples. Some familiarity with the Python programming language is expected.

Before directly jumping into decorators, let’s take a step back and start with Python functions. This will help you understand the concepts better.

Functions

A function in Python can be defined as follows:
def introduce(name):

return 'My name is %s' % name

This function takes name as input and returns a string, where:
  • def is the keyword used to define a function.
  • introduce is the name of the function.
  • the variable inside parentheses (name) is the required argument for the function.
  • next line is the body or definition of the function.

Function Properties

In Python, functions are treated as first-class objects. This means that Python treats functions as values. We can assign a function to a variable, pass it as an argument to another function, or return it as a value from another function.

def print_hello_world():

print('Hello World!')
We have defined a function 'print_hello_world’. Now we can assign it to a variable.
>>> modified_world = print_hello_world

(Here >>> is denoting the python interactive shell)

Now we can call modified_world just like the function print_hello_world.
>>> modified_world()

Hello World!
We can also pass a function to another function as an argument.
def execute(func):

print('Before execution')
func()
print('After execution')

So now when we pass print_hello_world function to execute function, the output will be as follows:
>>> execute(print_hello_world)

Before execution
Hello World!
After execution

Python also supports the nesting of functions. It means we can define another function in the body or definition of some other function. Example:

def foo(x):

def bar(y):
return x+y
return bar

In the example above, we have used two concepts described earlier.

1. Returning a function (bar) as a return value of the function foo

2. Nesting function bar in the definition of the function foo

Let’s see this code in action.

>>> v1 = foo(2)

Here v1 stores the return value of the function foo,which is another function bar. Now what will happen if we call v1 with some parameter?

>>>print(v1(5))

7

When a function is handled as data (in our case, return as a value from another function), it implicitly carries information required to execute the function. This is called closures in Python. We can check the closure of the function using __closure__ attribute of the function. This will return a tuple containing all the closures of the function. If we want to see any content of the closure, we can do something like v1.__closure__[0].cell_contents.

>>> v1.__closure__

(<cell at 0x7f4368e6c590: int object at 0xa41140>,)
>>> v1.__closure__[0].cell_contents
2

So, now that we looked at both function properties, let's see how we can use these properties in real scenarios.

Going Ahead

Suppose we want to perform some generic functionality before or/and after function execution. It can be like printing the execution time of the function.

One way to do this is by writing whatever we want to do before and after execution as initial and final statements, respectively. Example:

def print_hello_world():

print('Before Execution')
print('Hello World!')
print('After Execution')

Is this a good way. I leave it to you. What will happen if we have several functions and need to perform the same task for all other functions too?

Another way could be to write a function that will take any other function as an argument and return the function along with performing the task before and after function execution. Example:

def print_hello_world():

print('Hello World')

def dec(func):
def nest_func(*args, **kwargs):
print('Before Execution')
r = func(*args, **kwargs)
print('After Execution')
return r
return nest_func

The function print_hello_world just prints ‘Hello World’. Function dec takes a function as an argument and creates another function nest_func in its definition. nest_func prints some statements before and after the execution of the function is passed as an argument to function dec.

Let’s pass the function print_hello_world to dec.

>>> new_print_hello_world = dec(print_hello_world)

new_print_function is another function returned by the function dec. What will be the output on calling new_print_hello_world function? Let’s check it.

>>> new_print_hello_world()

Before Execution
Hello World
After Execution

What if we assign the new function returned by the dec function to print_hello_world function again?
>>> print_hello_world = dec(print_hello_world)

Let’s call print_hello_world function now.
>>> print_hello_world()

Before Execution
Hello World!
After Execution

We have changed the functionality of the function print_hello_world without changing the source code of the function itself.

So what next? If everything is clear till this point, then we have already learned about decorators. Let me explain.

Decorators

A decorator is a function which gives us the freedom to enhance or change the functionality of any function dynamically, without making changes in the code of the function.

In our case, function dec provides us with this functionality (as it changes the functionality of the function print_hello_world). So dec is called decorator. Instead of passing print_hello_world explicitly to function dec, we can use its shorthand syntax:

@dec

def print_hello_world():
print('Hello World')

I hope by now you understand what decorators are. You might be wondering why we need to return a function from the dec function? Just call the function in dec itself in which we can print statements along with executing the function passed as an argument. Example:

def dec1(func):

print('Before Execution')
func()
print('After Execution')
I have a few questions for you in answer. Suppose, I agree with you and decide to do it as suggested.
>>> print_hello_world = dec1(print_hello_world)
  1. What value does print_hello_world store right now? Can you call it now? (It is storing None which is the return value of the function dec1. So you can’t call print_hello_world now)
  2. What if we want to enhance a function having some arguments? One suggestion could be like this:
def dec2(func, arg1, arg2):

print('Before Execution')
func(arg1, arg2)
print('After Execution')

But the problem is this: how do you get the value of arg1 and arg2 at the time of passing any function to dec2?
>>> print_hello_world = dec2(print_hello_world, arg1, arg2)

Here, we will not be able to get the value of arg1 and arg2.

I hope these two points clearly explain why decorators are required to return a function.

Decorator Examples

  • It can be used to compute the execution time of any function.
    def compute_execution_time(func):
    
    def nest_func(*args, **kwargs):
    start = time.time()
    response = func(*args, **kwargs)
    end = time.time()
    print(end-start)
    return response
    return nest_func

  • In web applications, it can be used to check if the user is logged in or not.
    def login_required(func):
    
    def nest_function(request, *args, **kwargs):
    if request.user.is_authenticated():
    return func(request, *args, **kwargs)
    else
    return redirect('/login')
    return nest_function

I hope this article gives you a basic idea about Python decorators and some of their use cases. If you have any queries or feedback, you can reach me at udr.ritesh@gmail.com.

Subscribe to The HackerEarth Blog

Get expert tips, hacks, and how-tos from the world of tech recruiting to stay on top of your hiring!

Author
Ritesh Agrawal
Calendar Icon
December 15, 2016
Timer Icon
3 min read
Share

Hire top tech talent with our recruitment platform

Access Free Demo
Related reads

Discover more articles

Gain insights to optimize your developer recruitment process.

The Mobile Dev Hiring Landscape Just Changed

Revolutionizing Mobile Talent Hiring: The HackerEarth Advantage

The demand for mobile applications is exploding, but finding and verifying developers with proven, real-world skills is more difficult than ever. Traditional assessment methods often fall short, failing to replicate the complexities of modern mobile development.

Introducing a New Era in Mobile Assessment

At HackerEarth, we're closing this critical gap with two groundbreaking features, seamlessly integrated into our Full Stack IDE:

Article content

Now, assess mobile developers in their true native environment. Our enhanced Full Stack questions now offer full support for both Java and Kotlin, the core languages powering the Android ecosystem. This allows you to evaluate candidates on authentic, real-world app development skills, moving beyond theoretical knowledge to practical application.

Article content

Say goodbye to setup drama and tool-switching. Candidates can now build, test, and debug Android and React Native applications directly within the browser-based IDE. This seamless, in-browser experience provides a true-to-life evaluation, saving valuable time for both candidates and your hiring team.

Assess the Skills That Truly Matter

With native Android support, your assessments can now delve into a candidate's ability to write clean, efficient, and functional code in the languages professional developers use daily. Kotlin's rapid adoption makes proficiency in it a key indicator of a forward-thinking candidate ready for modern mobile development.

Breakup of Mobile development skills ~95% of mobile app dev happens through Java and Kotlin
This chart illustrates the importance of assessing proficiency in both modern (Kotlin) and established (Java) codebases.

Streamlining Your Assessment Workflow

The integrated mobile emulator fundamentally transforms the assessment process. By eliminating the friction of fragmented toolchains and complex local setups, we enable a faster, more effective evaluation and a superior candidate experience.

Old Fragmented Way vs. The New, Integrated Way
Visualize the stark difference: Our streamlined workflow removes technical hurdles, allowing candidates to focus purely on demonstrating their coding and problem-solving abilities.

Quantifiable Impact on Hiring Success

A seamless and authentic assessment environment isn't just a convenience, it's a powerful catalyst for efficiency and better hiring outcomes. By removing technical barriers, candidates can focus entirely on demonstrating their skills, leading to faster submissions and higher-quality signals for your recruiters and hiring managers.

A Better Experience for Everyone

Our new features are meticulously designed to benefit the entire hiring ecosystem:

For Recruiters & Hiring Managers:

  • Accurately assess real-world development skills.
  • Gain deeper insights into candidate proficiency.
  • Hire with greater confidence and speed.
  • Reduce candidate drop-off from technical friction.

For Candidates:

  • Enjoy a seamless, efficient assessment experience.
  • No need to switch between different tools or manage complex setups.
  • Focus purely on showcasing skills, not environment configurations.
  • Work in a powerful, professional-grade IDE.

Unlock a New Era of Mobile Talent Assessment

Stop guessing and start hiring the best mobile developers with confidence. Explore how HackerEarth can transform your tech recruiting.

Vibe Coding: Shaping the Future of Software

A New Era of Code

Vibe coding is a new method of using natural language prompts and AI tools to generate code. I have seen firsthand that this change makes software more accessible to everyone. In the past, being able to produce functional code was a strong advantage for developers. Today, when code is produced quickly through AI, the true value lies in designing, refining, and optimizing systems. Our role now goes beyond writing code; we must also ensure that our systems remain efficient and reliable.

From Machine Language to Natural Language

I recall the early days when every line of code was written manually. We progressed from machine language to high-level programming, and now we are beginning to interact with our tools using natural language. This development does not only increase speed but also changes how we approach problem solving. Product managers can now create working demos in hours instead of weeks, and founders have a clearer way of pitching their ideas with functional prototypes. It is important for us to rethink our role as developers and focus on architecture and system design rather than simply on typing c

The Promise and the Pitfalls

I have experienced both sides of vibe coding. In cases where the goal was to build a quick prototype or a simple internal tool, AI-generated code provided impressive results. Teams have been able to test new ideas and validate concepts much faster. However, when it comes to more complex systems that require careful planning and attention to detail, the output from AI can be problematic. I have seen situations where AI produces large volumes of code that become difficult to manage without significant human intervention.

AI-powered coding tools like GitHub Copilot and AWS’s Q Developer have demonstrated significant productivity gains. For instance, at the National Australia Bank, it’s reported that half of the production code is generated by Q Developer, allowing developers to focus on higher-level problem-solving . Similarly, platforms like Lovable or Hostinger Horizons enable non-coders to build viable tech businesses using natural language prompts, contributing to a shift where AI-generated code reduces the need for large engineering teams. However, there are challenges. AI-generated code can sometimes be verbose or lack the architectural discipline required for complex systems. While AI can rapidly produce prototypes or simple utilities, building large-scale systems still necessitates experienced engineers to refine and optimize the code.​

The Economic Impact

The democratization of code generation is altering the economic landscape of software development. As AI tools become more prevalent, the value of average coding skills may diminish, potentially affecting salaries for entry-level positions. Conversely, developers who excel in system design, architecture, and optimization are likely to see increased demand and compensation.​
Seizing the Opportunity

Vibe coding is most beneficial in areas such as rapid prototyping and building simple applications or internal tools. It frees up valuable time that we can then invest in higher-level tasks such as system architecture, security, and user experience. When used in the right context, AI becomes a helpful partner that accelerates the development process without replacing the need for skilled engineers.

This is revolutionizing our craft, much like the shift from machine language to assembly to high-level languages did in the past. AI can churn out code at lightning speed, but remember, “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” Use AI for rapid prototyping, but it’s your expertise that transforms raw output into robust, scalable software. By honing our skills in design and architecture, we ensure our work remains impactful and enduring. Let’s continue to learn, adapt, and build software that stands the test of time.​

Ready to streamline your recruitment process? Get a free demo to explore cutting-edge solutions and resources for your hiring needs.

Guide to Conducting Successful System Design Interviews in 2025

What is Systems Design?

Systems Design is an all encompassing term which encapsulates both frontend and backend components harmonized to define the overall architecture of a product.

Designing robust and scalable systems requires a deep understanding of application, architecture and their underlying components like networks, data, interfaces and modules.

Systems Design, in its essence, is a blueprint of how software and applications should work to meet specific goals. The multi-dimensional nature of this discipline makes it open-ended – as there is no single one-size-fits-all solution to a system design problem.

What is a System Design Interview?

Conducting a System Design interview requires recruiters to take an unconventional approach and look beyond right or wrong answers. Recruiters should aim for evaluating a candidate’s ‘systemic thinking’ skills across three key aspects:

How they navigate technical complexity and navigate uncertainty
How they meet expectations of scale, security and speed
How they focus on the bigger picture without losing sight of details

This assessment of the end-to-end thought process and a holistic approach to problem-solving is what the interview should focus on.

What are some common topics for a System Design Interview

System design interview questions are free-form and exploratory in nature where there is no right or best answer to a specific problem statement. Here are some common questions:

How would you approach the design of a social media app or video app?

What are some ways to design a search engine or a ticketing system?

How would you design an API for a payment gateway?

What are some trade-offs and constraints you will consider while designing systems?

What is your rationale for taking a particular approach to problem solving?

Usually, interviewers base the questions depending on the organization, its goals, key competitors and a candidate’s experience level.

For senior roles, the questions tend to focus on assessing the computational thinking, decision making and reasoning ability of a candidate. For entry level job interviews, the questions are designed to test the hard skills required for building a system architecture.

The Difference between a System Design Interview and a Coding Interview

If a coding interview is like a map that takes you from point A to Z – a systems design interview is like a compass which gives you a sense of the right direction.

Here are three key difference between the two:

Coding challenges follow a linear interviewing experience i.e. candidates are given a problem and interaction with recruiters is limited. System design interviews are more lateral and conversational, requiring active participation from interviewers.

Coding interviews or challenges focus on evaluating the technical acumen of a candidate whereas systems design interviews are oriented to assess problem solving and interpersonal skills.

Coding interviews are based on a right/wrong approach with ideal answers to problem statements while a systems design interview focuses on assessing the thought process and the ability to reason from first principles.

How to Conduct an Effective System Design Interview

One common mistake recruiters make is that they approach a system design interview with the expectations and preparation of a typical coding interview.
Here is a four step framework technical recruiters can follow to ensure a seamless and productive interview experience:

Step 1: Understand the subject at hand

  • Develop an understanding of basics of system design and architecture
  • Familiarize yourself with commonly asked systems design interview questions
  • Read about system design case studies for popular applications
  • Structure the questions and problems by increasing magnitude of difficulty

Step 2: Prepare for the interview

  • Plan the extent of the topics and scope of discussion in advance
  • Clearly define the evaluation criteria and communicate expectations
  • Quantify constraints, inputs, boundaries and assumptions
  • Establish the broader context and a detailed scope of the exercise

Step 3: Stay actively involved

  • Ask follow-up questions to challenge a solution
  • Probe candidates to gauge real-time logical reasoning skills
  • Make it a conversation and take notes of important pointers and outcomes
  • Guide candidates with hints and suggestions to steer them in the right direction

Step 4: Be a collaborator

  • Encourage candidates to explore and consider alternative solutions
  • Work with the candidate to drill the problem into smaller tasks
  • Provide context and supporting details to help candidates stay on track
  • Ask follow-up questions to learn about the candidate’s experience

Technical recruiters and hiring managers should aim for providing an environment of positive reinforcement, actionable feedback and encouragement to candidates.

Evaluation Rubric for Candidates

Facilitate Successful System Design Interview Experiences with FaceCode

FaceCode, HackerEarth’s intuitive and secure platform, empowers recruiters to conduct system design interviews in a live coding environment with HD video chat.

FaceCode comes with an interactive diagram board which makes it easier for interviewers to assess the design thinking skills and conduct communication assessments using a built-in library of diagram based questions.

With FaceCode, you can combine your feedback points with AI-powered insights to generate accurate, data-driven assessment reports in a breeze. Plus, you can access interview recordings and transcripts anytime to recall and trace back the interview experience.

Learn how FaceCode can help you conduct system design interviews and boost your hiring efficiency.

Top Products

Explore HackerEarth’s top products for Hiring & Innovation

Discover powerful tools designed to streamline hiring, assess talent efficiently, and run seamless hackathons. Explore HackerEarth’s top products that help businesses innovate and grow.
Frame
Hackathons
Engage global developers through innovation
Arrow
Frame 2
Assessments
AI-driven advanced coding assessments
Arrow
Frame 3
FaceCode
Real-time code editor for effective coding interviews
Arrow
Frame 4
L & D
Tailored learning paths for continuous assessments
Arrow
Get A Free Demo