Blog

Level Up with HackerEarth

Where innovation meets insight.
Explore expert perspectives, emerging tech trends, and real-world stories in coding, hiring, AI, and hackathons. Whether you're building, hiring, or learning — this is your go-to hub for sharp insights and practical knowledge from across the global developer ecosystem.
Featured and trending

Stay Ahead with the HackerEarth Blog

Dive into the latest in tech innovation, industry updates, and thought leadership. Discover what’s shaping the future — one post at a time.
Arrow Left
Arrow right

Vibe Coding: Shaping the Future of Software

A New Era of Code Vibe coding is a new method of using natural language prompts and AI tools to generate code. I have seen firsthand that this change Discover how vibe coding is reshaping software development. Learn about its benefits, challenges, and what it means for developers in the AI era.
Author
Vishwastam Shukla
Calendar Icon
August 13, 2025
Timer Icon
3 min read

A New Era of Code

Vibe coding is a new method of using natural language prompts and AI tools to generate code. I have seen firsthand that this change makes software more accessible to everyone. In the past, being able to produce functional code was a strong advantage for developers. Today, when code is produced quickly through AI, the true value lies in designing, refining, and optimizing systems. Our role now goes beyond writing code; we must also ensure that our systems remain efficient and reliable.

From Machine Language to Natural Language

I recall the early days when every line of code was written manually. We progressed from machine language to high-level programming, and now we are beginning to interact with our tools using natural language. This development does not only increase speed but also changes how we approach problem solving. Product managers can now create working demos in hours instead of weeks, and founders have a clearer way of pitching their ideas with functional prototypes. It is important for us to rethink our role as developers and focus on architecture and system design rather than simply on typing c

The Promise and the Pitfalls

I have experienced both sides of vibe coding. In cases where the goal was to build a quick prototype or a simple internal tool, AI-generated code provided impressive results. Teams have been able to test new ideas and validate concepts much faster. However, when it comes to more complex systems that require careful planning and attention to detail, the output from AI can be problematic. I have seen situations where AI produces large volumes of code that become difficult to manage without significant human intervention.

AI-powered coding tools like GitHub Copilot and AWS’s Q Developer have demonstrated significant productivity gains. For instance, at the National Australia Bank, it’s reported that half of the production code is generated by Q Developer, allowing developers to focus on higher-level problem-solving . Similarly, platforms like Lovable or Hostinger Horizons enable non-coders to build viable tech businesses using natural language prompts, contributing to a shift where AI-generated code reduces the need for large engineering teams. However, there are challenges. AI-generated code can sometimes be verbose or lack the architectural discipline required for complex systems. While AI can rapidly produce prototypes or simple utilities, building large-scale systems still necessitates experienced engineers to refine and optimize the code.​

The Economic Impact

The democratization of code generation is altering the economic landscape of software development. As AI tools become more prevalent, the value of average coding skills may diminish, potentially affecting salaries for entry-level positions. Conversely, developers who excel in system design, architecture, and optimization are likely to see increased demand and compensation.​
Seizing the Opportunity

Vibe coding is most beneficial in areas such as rapid prototyping and building simple applications or internal tools. It frees up valuable time that we can then invest in higher-level tasks such as system architecture, security, and user experience. When used in the right context, AI becomes a helpful partner that accelerates the development process without replacing the need for skilled engineers.

This is revolutionizing our craft, much like the shift from machine language to assembly to high-level languages did in the past. AI can churn out code at lightning speed, but remember, “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” Use AI for rapid prototyping, but it’s your expertise that transforms raw output into robust, scalable software. By honing our skills in design and architecture, we ensure our work remains impactful and enduring. Let’s continue to learn, adapt, and build software that stands the test of time.​

Ready to streamline your recruitment process? Get a free demo to explore cutting-edge solutions and resources for your hiring needs.

How Candidates Use Technology to Cheat in Online Technical Assessments

Discover common technologies used by candidates for cheating in online assessments. Explore effective prevention methods like proctoring, AI monitoring, and smart test formats.
Author
Nischal V Chadaga
Calendar Icon
August 22, 2025
Timer Icon
3 min read

Impact of Online Assessments in Technical Hiring


In a digitally-native hiring landscape, online assessments have proven to be both a boon and a bane for recruiters and employers.

The ease and efficiency of virtual interviews, take home programming tests and remote coding challenges is transformative. Around 82% of companies use pre-employment assessments as reliable indicators of a candidate's skills and potential.

Online skill assessment tests have been proven to streamline technical hiring and enable recruiters to significantly reduce the time and cost to identify and hire top talent.

In the realm of online assessments, remote assessments have transformed the hiring landscape, boosting the speed and efficiency of screening and evaluating talent. On the flip side, candidates have learned how to use creative methods and AI tools to cheat in tests.

As it turns out, technology that makes hiring easier for recruiters and managers - is also their Achilles' heel.

Cheating in Online Assessments is a High Stakes Problem



With the proliferation of AI in recruitment, the conversation around cheating has come to the forefront, putting recruiters and hiring managers in a bit of a flux.



According to research, nearly 30 to 50 percent of candidates cheat in online assessments for entry level jobs. Even 10% of senior candidates have been reportedly caught cheating.

The problem becomes twofold - if finding the right talent can be a competitive advantage, the consequences of hiring the wrong one can be equally damaging and counter-productive.

As per Forbes, a wrong hire can cost a company around 30% of an employee's salary - not to mention, loss of precious productive hours and morale disruption.

The question that arises is - "Can organizations continue to leverage AI-driven tools for online assessments without compromising on the integrity of their hiring process? "

This article will discuss the common methods candidates use to outsmart online assessments. We will also dive deep into actionable steps that you can take to prevent cheating while delivering a positive candidate experience.

Common Cheating Tactics and How You Can Combat Them


  1. Using ChatGPT and other AI tools to write code

    Copy-pasting code using AI-based platforms and online code generators is one of common cheat codes in candidates' books. For tackling technical assessments, candidates conveniently use readily available tools like ChatGPT and GitHub. Using these tools, candidates can easily generate solutions to solve common programming challenges such as:
    • Debugging code
    • Optimizing existing code
    • Writing problem-specific code from scratch
    Ways to prevent it
    • Enable full-screen mode
    • Disable copy-and-paste functionality
    • Restrict tab switching outside of code editors
    • Use AI to detect code that has been copied and pasted
  2. Enlist external help to complete the assessment


    Candidates often seek out someone else to take the assessment on their behalf. In many cases, they also use screen sharing and remote collaboration tools for real-time assistance.

    In extreme cases, some candidates might have an off-camera individual present in the same environment for help.

    Ways to prevent it
    • Verify a candidate using video authentication
    • Restrict test access from specific IP addresses
    • Use online proctoring by taking snapshots of the candidate periodically
    • Use a 360 degree environment scan to ensure no unauthorized individual is present
  3. Using multiple devices at the same time


    Candidates attempting to cheat often rely on secondary devices such as a computer, tablet, notebook or a mobile phone hidden from the line of sight of their webcam.

    By using multiple devices, candidates can look up information, search for solutions or simply augment their answers.

    Ways to prevent it
    • Track mouse exit count to detect irregularities
    • Detect when a new device or peripheral is connected
    • Use network monitoring and scanning to detect any smart devices in proximity
    • Conduct a virtual whiteboard interview to monitor movements and gestures
  4. Using remote desktop software and virtual machines


    Tech-savvy candidates go to great lengths to cheat. Using virtual machines, candidates can search for answers using a secondary OS while their primary OS is being monitored.

    Remote desktop software is another cheating technique which lets candidates give access to a third-person, allowing them to control their device.

    With remote desktops, candidates can screen share the test window and use external help.

    Ways to prevent it
    • Restrict access to virtual machines
    • AI-based proctoring for identifying malicious keystrokes
    • Use smart browsers to block candidates from using VMs

Future-proof Your Online Assessments With HackerEarth

HackerEarth's AI-powered online proctoring solution is a tested and proven way to outsmart cheating and take preventive measures at the right stage. With HackerEarth's Smart Browser, recruiters can mitigate the threat of cheating and ensure their online assessments are accurate and trustworthy.
  • Secure, sealed-off testing environment
  • AI-enabled live test monitoring
  • Enterprise-grade, industry leading compliance
  • Built-in features to track, detect and flag cheating attempts
Boost your hiring efficiency and conduct reliable online assessments confidently with HackerEarth's revolutionary Smart Browser.

Talent Acquisition Strategies For Rehiring Former Employees

Discover effective talent acquisition strategies for rehiring former employees. Learn how to attract, evaluate, and retain top boomerang talent to strengthen your workforce.
Author
Nischal V Chadaga
Calendar Icon
August 13, 2025
Timer Icon
3 min read
Former employees who return to work with the same organisation are essential assets. In talent acquisition, such employees are also termed as ‘Boomerang employees’. Former employees are valuable because they require the least training and onboarding because of their familiarity with the organization’s policies. Rehiring former employees by offering them more perks is a mark of a successful hiring process. This article will elaborate on the talent acquisition strategies for rehiring former employees, supported by a few real-life examples and best practices.

Why Should Organizations Consider Rehiring?

One of the best ways of ensuring quality hire with a low candidate turnover is to deploy employee retention programs like rehiring female professionals who wish to return to work after a career break. This gives former employees a chance to prove their expertise while ensuring them the organization’s faith in their skills and abilities. Besides, seeing former employees return to their old organizations encourages newly appointed employees to be more productive and contribute to the overall success of the organization they are working for. A few other benefits of rehiring old employees are listed below.

Reduced Hiring Costs

Hiring new talent incurs a few additional costs. For example, tasks such as sourcing resumes of potential candidates, reaching out to them, conducting interviews and screenings costs money to the HR department. Hiring former employees cuts down these costs and aids a seamless transition process for them.

Faster Onboarding

Since boomerang employees are well acquainted with the company’s onboarding process, they don’t have to undergo the entire exercise. A quick, one-day session informing them of any recent changes in the company’s work policies is sufficient to onboard them.

Retention of Knowledge

As a former employee, rehired executives have knowledge of the previous workflows and insights from working on former projects. This can be valuable in optimizing a current project. They bring immense knowledge and experience with them which can be instrumental in driving new projects to success.Starbucks is a prime example of a company that has successfully leveraged boomerang employees. Howard Schultz, the company's CEO, left in 2000 but returned in 2008 during a critical time for the firm. His leadership was instrumental in revitalizing the brand amid financial challenges.

Best Practices for Rehiring Former Employees

Implementing best practices is the safest way to go about any operation. Hiring former employees can be a daunting task especially if it involves someone who was fired previously. It is important to draft certain policies around rehiring former employees. Here are a few of them that can help you to get started.

1. Create a Clear Rehire Policy

While considering rehiring a former employee, it is essential to go through data indicating the reason why they had to leave in the first place. Any offer being offered must supersede their previous offer while marking clear boundaries to maintain work ethics. Offer a fair compensation that justifies their skills and abilities which can be major contributors to the success of the organization. A well-defined policy not only streamlines the rehiring process but also promotes fairness within the organization.

2. Conduct Thorough Exit Interviews

Exit interviews provide valuable insights into why employees leave and can help maintain relationships for potential future rehires. Key aspects to cover include:
  • Reasons for departure.
  • Conditions under which they might consider returning.
  • Feedback on organizational practices.
Keeping lines of communication open during these discussions can foster goodwill and encourage former employees to consider returning when the time is right.

3. Maintain Connections with Alumni

Creating and maintaining an alumni association must be an integral part of HR strategies. This exercise ensures that the HR department can find former employees in times of dire need and indicates to former employees how the organization is vested in their lives even after they have left them. This gesture fosters a feeling of goodwill and gratitude among former hires. Alumni networks and social media groups help former employees stay in touch with each other, thus improving their interpersonal communication.Research indicates that about 15% of rehired employees return because they maintained connections with their former employers.

4. Assess Current Needs Before Reaching Out

Before reaching out to former employees, assess all viable options and list out the reasons why rehiring is inevitable. Consider:
  • Changes in job responsibilities since their departure.
  • Skills or experiences gained by other team members during their absence.
It is essential to understand how the presence of a boomerang employee can be instrumental in solving professional crises before contacting them. It is also important to consider their present circumstances.

5. Initiate an Honest Conversation

When you get in touch with a former employee, it is important to understand their perspective on the job being offered. Make them feel heard and empathize with any difficult situations they may have had to face during their time in the organization. Understand why they would consider rejoining the company. These steps indicate that you truly care about them and fosters a certain level of trust between them and the organization which can motivate them to rejoin with a positive attitude.

6. Implement a Reboarding Program

When a former employee rejoins, HR departments must ensure a robust reboarding exercise is conducted to update them about any changes within the organization regarding the work policies and culture changes, training them about any new tools or systems that were deployed during their absence and allowing them time to reconnect with old team members or acquaint with new ones.

7. Make Them Feel Welcome

Creating a welcoming environment is essential for helping returning employees adjust smoothly. Consider:
  • Organizing team lunches or social events during their first week.
  • Assigning a mentor or buddy from their previous team to help them reacclimate.
  • Providing resources that facilitate learning about any organizational changes.
A positive onboarding experience reinforces their decision to return and fosters loyalty.

Real-Life Examples of Successful Rehiring

Several companies have successfully implemented these strategies:

IBM: The tech giant has embraced boomerang hiring by actively reaching out to former employees who possess critical skills in emerging technologies. IBM has found that these individuals often bring fresh perspectives that contribute significantly to innovation7.

Zappos: Known for its strong company culture, Zappos maintains an alumni network that keeps former employees engaged with the brand. This connection has led to numerous successful rehiring instances, enhancing both morale and productivity within teams6.

Conclusion

Rehiring former employees can provide organizations with unique advantages, including reduced costs, quicker onboarding, and retained knowledge. By implementing strategic practices—such as creating clear policies, maintaining connections, assessing current needs, and fostering welcoming environments—companies can effectively tap into this valuable talent pool.

As organizations continue navigating an ever-changing workforce landscape, embracing boomerang employees may be key to building resilient teams equipped for future challenges. By recognizing the potential benefits and following best practices outlined above, businesses can create a robust strategy for rehiring that enhances both employee satisfaction and organizational performance.
Arrow Left
Arrow right
Tech Hiring Insights

HackerEarth Blogs

Gain insights to optimize your developer recruitment process.
Clear all
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Filter
Filter

15 best computer programming languages for beginners

Computer programming languages are often confusing for beginners, each with its own dialect and vernacular.

And every programming language has its own set of syntax and code to write. So how to chose a programming language to learn?

With computer programming languages ranging from 67-year-old Assembly language to the young Ruby language.

And you know what? Every language has its own presence in the computer programming world.

Even a brief glance at the list of programming languages available gives one a nightmare. But for now, knowing the top programming languages to learn will help.

But then which is the best computer programming languages for beginners? or which programming language to learn first?

I decided to shortlist the most commonly used computer programming languages for beginners and make a complete guide to it.

Hope the list helps you.

Check this computer programming deck for dummies before you read further about each of them in detail.

This will help you with a quick glance over each programming language.

Programming language infographic, computer programming infographic, infographic programming, computer programming languages for beginners, Guide to computer programming languages, Programming languages guide, Dummies guide to programming languages, Dummies guide to computer programming languages, Learn C, Learn computer programming languages, How to begin with computer programming languages, which programming languages should I begin with, Which is the best programming languages, 15 Best programming languages to learn for beginners, programming languages to learn for beginners, 15 programming languages to learn first

  • Assembly Language

    Learn more

    It was developed as a shorthand to machine language so that you don’t only have to remember 0’s and 1’s while coding.

    Today, Assembly languages are used to access a specialized processor or address critical performance issues by direct hardware manipulation.

    Typically, they are used in low-level embedded and real-time systems.

    If you want to program a processor, the assembly language may not be necessary, but it is invaluable.

    Major Organization Users: IBM, Apple

  • C++ Language

    Learn more

    It is a middle-level, general purpose language. C++ brings in the feature of being object-oriented compared with its predecessor C.

    C++ is popular in areas where graphical representation is required like that for Windows and Macintosh.

    C++ has a rich function library and is a highly portable language.

    Here is beginners guide to C++ - C++ language tutorial

    Major Organization Users: Google, Mozilla, Firefox, Winamp, Adobe Software, Amazon, Lockheed Martin

  • C Language

    Learn more

    It is a general-purpose programming language.

    C provides a construct to map assembly language to C and has been most popularly used for operations which had been previously coded in assembly languages, including operating systems.

    C is one of the most widely used languages and has been a great influence on its successors.

    Major Organization Users: Microsoft, Apple, Oracle, Cisco, Raytheon

  • Objective C

    Learn more

    It is a general-purpose, object-oriented programming language that adds Smalltalk-style messaging in C language.

    Objective-C is one of the basic language used by Apple products and had been used in the development of iOS and OSX operating systems.

    Major Organization Users: Apple

  • MATLAB

    Learn more

    It integrates computation and programming in an easy-to-use environment where most of the objectives are represented by mathematical notation.

    Matlab is a high-performance language and is typically used for mathematical computation and algorithm development.

    Major Organization Users: GE, Continental, Robert Bosch, Honeywell, Mercedes-Benz

  • PERL

    Learn more

    It is a scripting language with syntax similar to C and has many features of UNIX. Programs written in Perl are called Perl script.

    Perl is an interpreted (not compiled) language that can optionally be compiled just before execution into either C code or cross-platform bytecode.

    Major Organizations Users: Apple, Yahoo, BBC, IMDB

  • R

    Learn more

    It is a dialect of S language. R language is used for statistical computing and graphics.

    R is commonly used by statisticians and data miners for statistical and analysis.

    R comes as a free software package and is available under GNU General public license.

    Major Organizations Users: Google, GE, Dropbox

  • Visual Basic

    Learn more

    It is a high-level language implemented on the .NET framework. VB was derived from BASIC, a user-friendly language designed for beginners.

    It enables the rapid application development (RAD) of graphical user interface (GUI) applications and access to databases using objects.

    Major Organizations Users: Microsoft

  • PYTHON

    Learn more

    It is another interpreted language on this list. Developed as a general purpose language.

    Python design emphasizes code readability and helps the user express in fewer lines of codes.

    Major Organizations Users: Google, Pinterest, Instagram, YouTube, DropBox, NASA, ESRI

  • PHP

    Learn more

    It is a scripting language used by users to create dynamic pages, which can be used further for transferring and submitting information on the web.

    You can connect with servers, databases, and external websites based on IP address or information available.

    PHP is one of the most commonly used scripting languages by web developers.

    Major Organizations Users: Facebook, Google, GE, Wordpress

  • Javascript

    Learn more

    It is a high-level programming language. Along with HTML and CSS, Javascript is one of the core languages in the development of World Wide Web content production.

    Most of the websites support javascript without needing plugins.

    Javascript is also used in the non-web-based application like PDF and desktop widgets.

    Major Organizations Users: WordPress, Soundcloud, Linkedin, Groupon, Yahoo

  • C#

    Learn more

    It is another language in the list of C languages. C# (pronounced as C-Sharp) is an object-oriented and component-oriented programming language.

    C# is one of the programming languages developed for common language infrastructure.

    Developers working on Windows prefer C# for developing applications and it turns out that C# is a big competitor to Java.

    Major Organizations Users: Any company dealing extensively with Windows

  • CSS

    Learn more

    CSS or Cascading style sheet is a style sheet language used for describing the presentation of documentation written in a markup language. Though often used for visual style up and user interface for HTML. CSS is a technology used by the most website to create visually engaging pages.

    Major Organizations Users: Apple, CyberCoders, Apex Systems

  • Java

    Learn more

    It is often called the best programming language, amidst much debate. Java is a high-level language. It was intended to be “write once, run anywhere (WORA),” i.e., once the code is written, it could be used on any platform that uses Java. Java is used for client-server applications with more than 9 million developers using the platform.

    Major Organizations Users: V2COM, Eclipse Information Technologies, eBay, Eurotech

  • Ruby

    Learn more

    It is one of the younger programming languages.

    Developed to increase productivity, Ruby is a server interpreted, non-compiled programming language.

    Ruby is used with Ruby on Rails for framework development.

    Major Organizations Users: Cybercoders, Amazon, EMC, Bloomberg

  • SQL

    Learn more

    Though not considered a programming language listed under Alan Turing test of programming language, for now, SQL is one of the recruiter's favorite programming language.

    SQL, or Structured Query Language, is a special-purpose, domain-specific programming language used in programming and managing the database (DBMS).

    Often described as a declarative language, SQL also includes procedural elements.

    Despite being a standard in ANSI since 1986, most SQL code is not portable to among different database systems.

    Major Organizations Users: Facebook, Google, Adobe, Alcatel-Lucent

You can also read about these 13 rare and underrated programming skills to learn here

4 performance optimization tips for faster Python code

1. Get the whole setup ready before-hand

This is common sense. Get the whole setup ready. Fire-up your python editor before-hand. If you are writing your files in your local, create a virtual environment and activate it. Along with this, I would advise one other thing which might seem a bit controversial and counter-intuitive, and that is to use TDD. Use your favourite testing tool. I generally use pytest and have that “pip”-d in my virtual environment and start writing small test scripts. I have found that testing helps in clarity of thought, which helps in writing faster programs. Also, this helps in refactoring the code to make it faster. We will get to it later.

2. Get the code working first

People have their own coding styles. Use the coding style that you are most comfortable with. For the first iteration, make the code work, at least and make the submission. See if it passes for all the test cases. If it’s passing then, c'est fait. It's done. And you can move on to the next question.

In case its passing for some of the test cases, while failing for others, citing memory issues, then you know that there is still some work left.

3. Python Coding Tips

Strings:

Do not use the below construct.

s = ""
for x in somelist:
    s += some_function(x)

Instead use this

slist = [some_function(el) for el in somelist]
s = "".join(slist)

This is because in Python, str is immutable, so the left and right strings have to be copied into the new string for every pair of concatenation.

Language Constructs:

Functions: Make functions of your code and although procedural code is supported in Python, it's better to write them in functions.

def main():
    for i in xrange(10**8):
        pass

main()

is better than

for i in xrange(10**8):
    pass

This is because of the underlying CPython implementation. In short, it is faster to store local variables than globals. Read more in this SO post.

I would recommend you keep your procedural code as little as possible. You can use the following standard template.

def solution(args):
    # write the code
    pass

def main():
    # write the input logic to take the input from STDIN
    input_args = ""
    solution(input_args)

if __name__ == "__main__":
    main()

Use the standard library:

Use built-in functions and the standard library as much as possible. Therefore, instead of this:

newlist = []
for item in oldlist:
    newlist.append(myfunc(item))

Use this:

newlist = map(myfunc, oldlist)

There is also the list expressions or the generator expressions.

newlist = [myfunc(item) for item in oldlist]  # list expression
newlist = (myfunc(item) for item in oldlist)  # generator expression

Similarly, use the standard library, like itertools, as they are generally faster and optimized for common operations. So you can have something like permutation for a loop in just three lines of code.

>> import itertools
>>> iter = itertools.permutations([1,2,3])
>>> list(iter)
[(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)]

But if the containers are tiny, then any difference between code using libraries is likely to be minimal, and the cost of creating the containers will outweigh the gains they give.

Generators:

A Python generator is a function which returns a generator iterator (just an object we can iterate over) by calling yield. When a generator function calls yield, the "state" of the generator function is frozen; the values of all variables are saved and the next line of code to be executed is recorded until next() is called again. Generators are excellent constructs to reduce both the average time complexity as well as the memory footprint of the code that you have written. Just look at the following code for prime numbers.

def fib():
    a, b = 0, 1
    while 1:
        yield a
        a, b = b, a + b

So, this will keep on generating Fibonacci numbers infinitely without the need to keep all the numbers in a list or any other construct. Please keep in mind that you should use this construct only when you don't have any absolute need to keep all the generated values because then you will lose the advantage of having a generator construct.

4. Algorithms and Data structures

To make your code run faster, the most important thing that you can do is to take two minutes before writing any code and think about the data-structure that you are going to use. Look at the time complexity for the basic python data-structures and use them based on the operation that is most used in your code. The time complexity of the list taken from python wiki is shown below.

Similarly, keep on reading from all sources about the most efficient data structures and algorithms that you can use. Keep an inventory of the common data structures such as nodes and graphs and remember or keep a handy journal on the situations where they are most appropriate.

Writing fast code is a habit and a skill, which needs to be honed over the years. There are no shortcuts. So do your best and best of luck.

Reference:

stackoverflow.com: optimizing python code

dzone.com: 6 python performance tips

python wiki: Performance Tips

softwareengineering-stackexchange: lkndasldfn

quora: How do I speed up my Python code

python: list to string

monitis: python performance tips part 1

How can R Users Learn Python for Data Science ?

Introduction

The best way to learn a new skill is by doing it!

This article is meant to help R users enhance their set of skills and learn Python for data science (from scratch). After all, R and Python are the most important programming languages a data scientist must know.

Python is a supremely powerful and a multi-purpose programming language. It has grown phenomenally in the last few years. It is used for web development, game development, and now data analysis / machine learning. Data analysis and machine learning is a relatively new branch in python.

For a beginner in data science, learning python for data analysis can be really painful. Why?

You try Googling "learn python," and you'll get tons of tutorials only meant for learning python for web development. How can you find a way then?

In this tutorial, we'll be exploring the basics of python for performing data manipulation tasks. Alongside, we'll also look how you do it in R. This parallel comparison will help you relate the set of tasks you do in R to how you do it in python! And in the end, we'll take up a data set and practice our newly acquired python skills.

Note: This article is best suited for people who have a basic knowledge of R language.

Machine learning challenge, ML challenge

Table of Contents

  1. Why learn Python (even if you already know R)
  2. Understanding Data Types and Structures in Python vs. R
  3. Writing Code in Python vs. R
  4. Practicing Python on a Data Set

Why learn Python (even if you already know R)

No doubt, R is tremendously great at what it does. In fact, it was originally designed for doing statistical computing and manipulations. Its incredible community support allows a beginner to learn R quickly.

But, python is catching up fast. Established companies and startups have embraced python at a much larger scale compared to R.

r machine learning vs python machine learning

According to indeed.com (from Jan 2016 to November 2016), the number of job postings seeking "machine learning python" increased much faster (approx. 123%) than "machine learning in R" jobs. Do you know why? It is because

  1. Python supports the entire spectrum of machine learning in a much better way.
  2. Python not only supports model building but also supports model deployment.
  3. The support of various powerful deep learning libraries such as keras, convnet, theano, and tensorflow is more for python than R.
  4. You don't need to juggle between several packages to locate a function in python unlike you do in R. Python has relatively fewer libraries, with each having all the functions a data scientist would need.

Understanding Data Types and Structures in Python vs. R

These programming languages understand the complexity of a data set based on its variables and data types. Yes! Let's say you have a data set with one million rows and 50 columns. How would these programming languages understand the data?

Basically, both R and Python have pre-defined data types. The dependent and independent variables get classified among these data types. And, based on the data type, the interpreter allots memory for use. Python supports the following data types:

  1. Numbers – It stores numeric values. These numeric values can be stored in 4 types: integer, long, float, and complex.
    • Integer – Whole numbers such as 10, 13, 91, 102. Same as R's integer type.
    • Long – Long integers in octa and hexadecimal. R uses bit64 package for hexadecimal.
    • Float – Decimal values like 1.23, 9.89. Equivalent to R's numeric type.
    • Complex – Numbers like 2 + 3i, 5i. Rarely used in data analysis.
  2. Boolean – Stores two values (True and False). R uses factor or character. Case-sensitive difference exists: R uses TRUE/FALSE; Python uses True/False.
  3. Strings – Stores text like "elephant", "lotus". Same as R's character type.
  4. Lists – Like R’s list, stores multiple data types in one structure.
  5. Tuples – Similar to immutable vectors in R (though R has no direct equivalent).
  6. Dictionary – Key-value pair structure. Think of keys as column names, values as data entries.

Since R is a statistical computing language, all the functions to manipulate data and reading variables are available inherently. On the other hand, python hails all the data analysis / manipulation / visualization functions from external libraries. Python has several libraries for data manipulation and machine learning. The most important ones are:

  1. Numpy – Used for numerical computing. Offers math functions and array support. Similar to R’s list or array.
  2. Scipy – Scientific computing in python.
  3. Matplotlib – For data visualization. R uses ggplot2.
  4. Pandas – Main tool for data manipulation. R uses dplyr, data.table.
  5. Scikit Learn – Core library for machine learning algorithms in python.

In a way, python for a data scientist is largely about mastering the libraries stated above. However, there are many more advanced libraries which people have started using. Therefore, for practical purposes you should remember the following things:

  1. Array – Similar to R's list, supports multidimensional data with coercion effect when data types differ.
  2. List – Equivalent to R’s list.
  3. Data Frame – Two-dimensional structure composed of lists. R uses data.frame; python uses DataFrame from pandas.
  4. Matrix – Multidimensional structure of same class data. In R: matrix(); in python: numpy.column_stack().

Until here, I hope you've understood the basics of data types and data structures in R and Python. Now, let's start working with them!

Writing Code in Python vs. R

Let's use the knowledge gained in the previous section and understand its practical implications. But before that, you should install python using Anaconda's Jupyter Notebook. You can download here. Also, you can download other python IDEs. I hope you already have R Studio installed.

1. Creating Lists

In R:

my_list <- list('monday','specter',24,TRUE)
typeof(my_list)
[1] "list"

In Python:

my_list = ['monday','specter',24,True]
type(my_list)
list

Using pandas Series:

import pandas as pd
pd_list = pd.Series(my_list)
pd_list
0     monday
1    specter
2         24
3       True
dtype: object

Python uses zero-based indexing; R uses one-based indexing.

2. Matrix

In R:

my_mat <- matrix(1:10, nrow = 5)
my_mat
     [,1] [,2]
[1,]    1    6
[2,]    2    7
[3,]    3    8
[4,]    4    9
[5,]    5   10

# Select first row
my_mat[1,]

# Select second column
my_mat[,2]

In Python (using NumPy):

import numpy as np
a = np.array(range(10,15))
b = np.array(range(20,25))
c = np.array(range(30,35))
my_mat = np.column_stack([a, b, c])

# Select first row
my_mat[0,]

# Select second column
my_mat[:,1]

3. Data Frames

In R:

data_set <- data.frame(Name = c("Sam","Paul","Tracy","Peter"),
                       Hair_Colour = c("Brown","White","Black","Black"),
                       Score = c(45,89,34,39))

In Python:

data_set = pd.DataFrame({'Name': ["Sam","Paul","Tracy","Peter"],
                         'Hair_Colour': ["Brown","White","Black","Black"],
                         'Score': [45,89,34,39]})

Selecting columns:

In R:

data_set$Name
data_set[["Name"]]
data_set[1]

data_set[c('Name','Hair_Colour')]
data_set[,c('Name','Hair_Colour')]

In Python:

data_set['Name']
data_set.Name
data_set[['Name','Hair_Colour']]
data_set.loc[:,['Name','Hair_Colour']]

Practicing Python on a Data Set

import numpy as np
import pandas as pd
from sklearn.datasets import load_boston

boston = load_boston()

boston.keys()
['data', 'feature_names', 'DESCR', 'target']

print(boston['feature_names'])
['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO' 'B' 'LSTAT']

print(boston['DESCR'])
bos_data = pd.DataFrame(boston['data'])
bos_data.head()

bos_data.columns = boston['feature_names']
bos_data.head()

bos_data.describe()

# First 10 rows
bos_data.iloc[:10]

# First 5 columns
bos_data.loc[:, 'CRIM':'NOX']
bos_data.iloc[:, :5]

# Filter rows
bos_data.query("CRIM > 0.05 & CHAS == 0")

# Sample
bos_data.sample(n=10)

# Sort
bos_data.sort_values(['CRIM']).head()
bos_data.sort_values(['CRIM'], ascending=False).head()

# Rename column
bos_data.rename(columns={'CRIM': 'CRIM_NEW'})

# Column means
bos_data[['ZN','RM']].mean()

# Transform numeric to categorical
bos_data['ZN_Cat'] = pd.cut(bos_data['ZN'], bins=5, labels=['a','b','c','d','e'])

# Grouped sum
bos_data.groupby('ZN_Cat')['AGE'].sum()

# Pivot table
bos_data['NEW_AGE'] = pd.cut(bos_data['AGE'], bins=3, labels=['Young','Old','Very_Old'])
bos_data.pivot_table(values='DIS', index='ZN_Cat', columns='NEW_AGE', aggfunc='mean')

Summary

While coding in python, I realized that there is not much difference in the amount of code you write here; although some functions are shorter in R than in Python. However, R has really awesome packages which handle big data quite conveniently. Do let me know if you wish to learn about them!

Overall, learning both the languages would give you enough confidence to handle any type of data set. In fact, the best part about learning python is its comprehensive documentation available on numpy, pandas, and scikit learn libraries, which are sufficient enough to help you overcome all initial obstacles.

In this article, we just touched the basics of python. There's a long way to go. Next week, we'll learn about data manipulation in python in detail. After that, we'll look into data visualization, and the powerful machine learning library in python.

Do share your experience, suggestions, and questions below while practicing this tutorial!

Breadth First Search example (BFS) - How GPS navigation works

There are differences in the route which I usually take and the one which GPS shows as the shortest, probably due to the algorithms used. I learned from my graph theory data structure classes that (BFS) Breadth First search example is GPS navigation and digital maps. I tried looking for the possible use of Algorithms (Breadth First Search example or A* application) used in GPS navigation on the web, but I couldn’t find a lot of details. So here is how Breadth First Search is used in real life application like GPS.

Let’s first understand working of GPS navigation

Digital maps, unlike humans, see streets as a bunch of nodes. The 2.6-mile road from the Columbus Circle station (59 st) to Cathedral Pkwy (110 st) is called Central Park West. We (humans) consider this road a single entity (You may divide it into few more segments based on metro stations or intersections, but not more than that).

Central Park West Map

But a GPS navigation or any other digital map divides it into hundreds of segments, with some only 24 meters long. A GPS looks at this street as a graph divided into vertices and edges.

Graph Representation of Streets

Considering this, there is a lot of data to be covered and calculated while finding the shortest path.

What is a graph?

A graph usually looks like the image below and is made up of vertices and edges (represented by lines and circles, respectively).

Graph Nodes and Edges

The objective of a graph is to represent a problem as a set of points that are connected in various ways using edges. With the help of such graphs, we tend to solve our problems by applying various algorithms.

Let’s take an example to understand better.

Facebook is a good example to understand graph theory.

Facebook has millions of users. If a person needs to find a friend, he can use an array and search. But that would take a lot of time and memory to search for so many people, making the problem quite complex.

But if the same scenario is represented using a graph, the problems tend to get solved easily. With a graph, you know that these two people are actually friends (Though real-life scenarios are not exactly that simple!). Check this video on how graph theory is used in social networks:

Graph theories are frequently used in various other fields, such as maps, e-commerce, and computer games.

Before we go further down this road, read this detailed article about graph theory, which explains other important aspects of Graphs such as Directed, Undirected, Cycle or Loop, and Matrix.

What’s the difference between a Graph and a Tree?

A tree is a special type of graph, i.e., a minimal graph, where there is only one path between two vertices.

So what is Breadth First Search and how does it work?

Depth First Search (DFS) and Breadth First Search (BFS) are algorithms, or in simple terms, they are methods to traverse a graph.

Before I explain Breadth First Search, consider this example.

Take a graph with 13 nodes. When Breadth First Search is applied to this graph, the algorithm traverses from node 1 to node 2 and then to nodes 3, 4, 5, 6 (in green) and so on in the given order.

If you consider 1 (in red) as the first node, you observe that Breadth First Search gradually moves outward, considering each neighboring node first.

BFS Example on Graph

This eventually brings us to the accepted definition of the Breadth First Search algorithm:

“Breadth First search (BFS) is an algorithm for traversing or searching tree or graph data structures. It starts at the tree root (or some arbitrary node of a graph, sometimes referred to as a "search key") and explores the neighbor nodes first, before moving to the next level neighbors.”

Graph Traversal in Maps

Take a look at this simple “Gridworld” which is used for various graph traversal algorithms. Your digital map considers your world a similar grid, which is made up of intersections connected to each other.

Grid World

Now for the grid shown, there could be N number of ways to traverse from point A to point P.

Following are two of these N ways in which one can travel from point A to point P.

Multiple Gridworld Paths

So how does an algorithm decide which the shortest way to reach a destination is? Graph Traversal Algorithms!

The Breadth First Search algorithm looks at the map as we do; it just can’t perceive it completely. When you have to travel from one destination to another, you draw a line from point A to point B, and then chose the road closest to that line. Algorithms repeat the same method choosing the node nearest to the intersection points, eventually selecting the route with the shortest length.

Let’s take a simple example of GridWorld given above and try solving it using Breadth First Search. Assume you need to travel from location A to location P.

Note: Every vertex in the image is given a number, which is the total distance from the source and an alphabet which represents the previous node.

Breadth First Search for GridWorld

Step 1 - Visit neighboring nodes to A, i.e, B, E, and F. The vertex to B would become 1-A and since E and F are also at an equal distance as B, hence vertices to both E and F from A, could be denoted as 1-A too.

BFS Step 1

Step 2 - Mark "A" as visited. Use B as the source node. Visit adjacent nodes to B: C (2B) and G (2B). Node F is already considered.

BFS Step 2

Step 3 - Visit neighboring nodes of E: I (2E) and J (2E), and mark E as visited.

Step 4 - Visit neighbors of F: K (2F). F is marked as visited.

Step 5 - Repeat until all nodes are visited.

Step 6 - The shortest route from A to P is diagonal with distance 3.

Shortest BFS Path

Removing unused vertices creates a minimum spanning tree, where each node is connected to at least one vertex.

But in real scenarios, diagonal movement isn't always possible. Let's analyze GridWorld again, this time disallowing diagonal moves.

Step 1 - Source node A: visit B(1A), E (1A). Mark A as visited.

BFS No Diagonal Step 1

Step 2 - Node B: visit C (2B) and F (2B), mark B as visited.

Step 3 - Node E: visit I (2E), mark E as visited.

BFS No Diagonal Step 3

Step 4 - Continue visiting all nodes and marking visited.

Step 5 - Remove unconnected vertices, and build the minimum spanning tree.

Step 6 - Highlight shortest path A to P with a distance of 6.

Shortest BFS Path Without Diagonal

You now understand why GPS navigation didn't suggest the path A, E, I, M, N, O, P or A,B,C, D, H, L, P though they were equidistant.

Once you've understood the way GPS works, you’d wish the world could be a simple Grid! But to a programmer's disappointment, it isn’t. Hence, for a GPS, distance is not the only factor in choosing a route, rather elapsed time, the speed limit on a route, live traffic update, the number of stop signals all has to be taken into consideration. That’s why you would find your GPS occasionally suggesting winding state highways to travel instead of the usual national highways.

Most of the GPS or digital maps have evolved over Breadth First Search to A* algorithm (You can read more about A* algorithm - Here) due to better complexity over a period of time.

Yet, GPS is one of the most amazing devices. Connected to satellites 12,000 miles above the planet, it calculates your position in real time with more than 50,00,000 possibilities for a particular route.

Watch the video explaining the Use of Breadth first search in GPS navigation here:

Practical Guide to Logistic Regression Analysis in R

Introduction

Recruiters in the analytics/data science industry expect you to know at least two algorithms: Linear Regression and Logistic Regression. I believe you should have in-depth understanding of these algorithms. Let me tell you why.

Due to their ease of interpretation, consultancy firms use these algorithms extensively. Startups are also catching up fast. As a result, in an analytics interview, most of the questions come from linear and Logistic Regression.

In this article, you'll learn Logistic Regression in detail. Believe me, Logistic Regression isn't easy to master. It does follow some assumptions like Linear Regression. But its method of calculating model fit and evaluation metrics is entirely different from Linear/Multiple regression.

But, don't worry! After you finish this tutorial, you'll become confident enough to explain Logistic Regression to your friends and even colleagues. Alongside theory, you'll also learn to implement Logistic Regression on a data set. I'll use R Language. In addition, we'll also look at various types of Logistic Regression methods.

Note: You should know basic algebra (elementary level). Also, if you are new to regression, I suggest you read how Linear Regression works first.

Table of Contents

  1. What is Logistic Regression ?
  2. What are the types of Logistic Regression techniques ?
  3. How does Logistic Regression work ?
  4. How can you evaluate Logistic Regression's model fit and accuracy ?
  5. Practical - Who survived on the Titanic ?
Machine learning challenge, ML challenge

What is Logistic Regression ?

Many a time, situations arise where the dependent variable isn't normally distributed; i.e., the assumption of normality is violated. For example, think of a problem when the dependent variable is binary (Male/Female). Will you still use Multiple Regression? Of course not! Why? We'll look at it below.

Let's take a peek into the history of data analysis.

So, until 1972, people didn't know how to analyze data which has a non-normal error distribution in the dependent variable. Then, in 1972, came a breakthrough by John Nelder and Robert Wedderburn in the form of Generalized Linear Models. I'm sure you would be familiar with the term. Now, let's understand it in detail.

Generalized Linear Models are an extension of the linear model framework, which includes dependent variables which are non-normal also. In general, they possess three characteristics:

  1. These models comprise a linear combination of input features.
  2. The mean of the response variable is related to the linear combination of input features via a link function.
  3. The response variable is considered to have an underlying probability distribution belonging to the family of exponential distributions such as binomial distribution, Poisson distribution, or Gaussian distribution. Practically, binomial distribution is used when the response variable is binary. Poisson distribution is used when the response variable represents count. And, Gaussian distribution is used when the response variable is continuous.

Logistic Regression belongs to the family of generalized linear models. It is a binary classification algorithm used when the response variable is dichotomous (1 or 0). Inherently, it returns the set of probabilities of target class. But, we can also obtain response labels using a probability threshold value. Following are the assumptions made by Logistic Regression:

  1. The response variable must follow a binomial distribution.
  2. Logistic Regression assumes a linear relationship between the independent variables and the link function (logit).
  3. The dependent variable should have mutually exclusive and exhaustive categories.

In R, we use glm() function to apply Logistic Regression. In Python, we use sklearn.linear_model function to import and use Logistic Regression.

Note: We don't use Linear Regression for binary classification because its linear function results in probabilities outside [0,1] interval, thereby making them invalid predictions.

What are the types of Logistic Regression techniques ?

Logistic Regression isn't just limited to solving binary classification problems. To solve problems that have multiple classes, we can use extensions of Logistic Regression, which includes Multinomial Logistic Regression and Ordinal Logistic Regression. Let's get their basic idea:

1. Multinomial Logistic Regression: Let's say our target variable has K = 4 classes. This technique handles the multi-class problem by fitting K-1 independent binary logistic classifier model. For doing this, it randomly chooses one target class as the reference class and fits K-1 regression models that compare each of the remaining classes to the reference class.

Due to its restrictive nature, it isn't used widely because it does not scale very well in the presence of a large number of target classes. In addition, since it builds K - 1 models, we would require a much larger data set to achieve reasonable accuracy.

2. Ordinal Logistic Regression: This technique is used when the target variable is ordinal in nature. Let's say, we want to predict years of work experience (1,2,3,4,5, etc). So, there exists an order in the value, i.e., 5>4>3>2>1. Unlike a multinomial model, when we train K -1 models, Ordinal Logistic Regression builds a single model with multiple threshold values.

If we have K classes, the model will require K -1 threshold or cutoff points. Also, it makes an imperative assumption of proportional odds. The assumption says that on a logit (S shape) scale, all of the thresholds lie on a straight line.

Note: Logistic Regression is not a great choice to solve multi-class problems. But, it's good to be aware of its types. In this tutorial we'll focus on Logistic Regression for binary classification task.

How does Logistic Regression work?

Now comes the interesting part!

As we know, Logistic Regression assumes that the dependent (or response) variable follows a binomial distribution. Now, you may wonder, what is binomial distribution? Binomial distribution can be identified by the following characteristics:

  1. There must be a fixed number of trials denoted by n, i.e. in the data set, there must be a fixed number of rows.
  2. Each trial can have only two outcomes; i.e., the response variable can have only two unique categories.
  3. The outcome of each trial must be independent of each other; i.e., the unique levels of the response variable must be independent of each other.
  4. The probability of success (p) and failure (q) should be the same for each trial.
Let's understand how Logistic Regression works. For Linear Regression, where the output is a linear combination of input feature(s), we write the equation as:

Y = ?o + ?1X + ?

In Logistic Regression, we use the same equation but with some modifications made to Y. Let's reiterate a fact about Logistic Regression: we calculate probabilities. And, probabilities always lie between 0 and 1. In other words, we can say:

  1. The response value must be positive.
  2. It should be lower than 1.

First, we'll meet the above two criteria. We know the exponential of any value is always a positive number. And, any number divided by number + 1 will always be lower than 1. Let's implement these two findings:

This is the logistic function.

Now we are convinced that the probability value will always lie between 0 and 1. To determine the link function, follow the algebraic calculations carefully. P(Y=1|X) can be read as "probability that Y =1 given some value for x." Y can take only two values, 1 or 0. For ease of calculation, let's rewrite P(Y=1|X) as p(X).

logistic regression equation derivation

As you might recognize, the right side of the (immediate) equation above depicts the linear combination of independent variables. The left side is known as the log - odds or odds ratio or logit function and is the link function for Logistic Regression. This link function follows a sigmoid (shown below) function which limits its range of probabilities between 0 and 1.

SigmoidPlot logistic function

Until here, I hope you've understood how we derive the equation of Logistic Regression. But how is it interpreted?

We can interpret the above equation as, a unit increase in variable x results in multiplying the odds ratio by ? to power ?. In other words, the regression coefficients explain the change in log(odds) in the response for a unit change in predictor. However, since the relationship between p(X) and X is not straight line, a unit change in input feature doesn't really affect the model output directly but it affects the odds ratio.

This is contradictory to Linear Regression where, regardless of the value of input feature, the regression coefficient always represents a fixed increase/decrease in the model output per unit increase in the input feature.

In Multiple Regression, we use the Ordinary Least Square (OLS) method to determine the best coefficients to attain good model fit. In Logistic Regression, we use maximum likelihood method to determine the best coefficients and eventually a good model fit.

Maximum likelihood works like this: It tries to find the value of coefficients (?o,?1) such that the predicted probabilities are as close to the observed probabilities as possible. In other words, for a binary classification (1/0), maximum likelihood will try to find values of ?o and ?1 such that the resultant probabilities are closest to either 1 or 0. The likelihood function is written as

How can you evaluate Logistic Regression model fit and accuracy ?

In Linear Regression, we check adjusted R², F Statistics, MAE, and RMSE to evaluate model fit and accuracy. But, Logistic Regression employs all different sets of metrics. Here, we deal with probabilities and categorical values. Following are the evaluation metrics used for Logistic Regression:

1. Akaike Information Criteria (AIC)

You can look at AIC as counterpart of adjusted r square in multiple regression. It's an important indicator of model fit. It follows the rule: Smaller the better. AIC penalizes increasing number of coefficients in the model. In other words, adding more variables to the model wouldn't let AIC increase. It helps to avoid overfitting.

Looking at the AIC metric of one model wouldn't really help. It is more useful in comparing models (model selection). So, build 2 or 3 Logistic Regression models and compare their AIC. The model with the lowest AIC will be relatively better.

2. Null Deviance and Residual Deviance

Deviance of an observation is computed as -2 times log likelihood of that observation. The importance of deviance can be further understood using its types: Null and Residual Deviance. Null deviance is calculated from the model with no features, i.e.,only intercept. The null model predicts class via a constant probability.

Residual deviance is calculated from the model having all the features.On comarison with Linear Regression, think of residual deviance as residual sum of square (RSS) and null deviance as total sum of squares (TSS). The larger the difference between null and residual deviance, better the model.

Also, you can use these metrics to compared multiple models: whichever model has a lower null deviance, means that the model explains deviance pretty well, and is a better model. Also, lower the residual deviance, better the model. Practically, AIC is always given preference above deviance to evaluate model fit.

3. Confusion Matrix

Confusion matrix is the most crucial metric commonly used to evaluate classification models. It's quite confusing but make sure you understand it by heart. If you still don't understand anything, ask me in comments. The skeleton of a confusion matrix looks like this:

confusion matrix logistic regression

As you can see, the confusion matrix avoids "confusion" by measuring the actual and predicted values in a tabular format. In table above, Positive class = 1 and Negative class = 0. Following are the metrics we can derive from a confusion matrix:

Accuracy - It determines the overall predicted accuracy of the model. It is calculated as Accuracy = (True Positives + True Negatives)/(True Positives + True Negatives + False Positives + False Negatives)

True Positive Rate (TPR) - It indicates how many positive values, out of all the positive values, have been correctly predicted. The formula to calculate the true positive rate is (TP/TP + FN). Also, TPR = 1 - False Negative Rate. It is also known as Sensitivity or Recall.

False Positive Rate (FPR) - It indicates how many negative values, out of all the negative values, have been incorrectly predicted. The formula to calculate the false positive rate is (FP/FP + TN). Also, FPR = 1 - True Negative Rate.

True Negative Rate (TNR) - It indicates how many negative values, out of all the negative values, have been correctly predicted. The formula to calculate the true negative rate is (TN/TN + FP). It is also known as Specificity.

False Negative Rate (FNR) - It indicates how many positive values, out of all the positive values, have been incorrectly predicted. The formula to calculate false negative rate is (FN/FN + TP).

Precision: It indicates how many values, out of all the predicted positive values, are actually positive. It is formulated as:(TP / TP + FP).

F Score: F score is the harmonic mean of precision and recall. It lies between 0 and 1. Higher the value, better the model. It is formulated as 2((precision*recall) / (precision+recall)).

In the Spotlight

Technical Screening Guide: All You Need To Know

Read this guide and learn how you can establish a less frustrating developer hiring workflow for both hiring teams and candidates.
Read More
Mobile Left Background Image

Can we stay in touch?

We’d love to give you a free walkthrough of HackerEarth, so consider scheduling a free demo.
Get a free demoMobile Right Background Image
Authors

Meet our Authors

Get to know the experts behind our content. From industry leaders to tech enthusiasts, our authors share valuable insights, trends, and expertise to keep you informed and inspired.
Ruehie Jaiya Karri
Kumari Trishya

AI In Recruitment: The Good, The Bad, The Ugly

Artificial Intelligence (AI) has permeated virtually every industry, transforming operations and interactions. The tech recruitment sector is no exception, and AI’s influence shapes the hiring processes in revolutionary ways. From leveraging AI-powered chatbots for preliminary candidate screenings to deploying machine learning algorithms for efficient resume parsing, AI leaves an indelible mark on tech hiring practices.

Yet, amidst these promising advancements, we must acknowledge the other side of the coin: AI’s potential malpractices, including the likelihood of cheating on assessments, issues around data privacy, and the risk of bias against minority groups.

The dark side of AI in tech recruitment

Negative impact of AI

The introduction of AI in recruitment, while presenting significant opportunities, also brings with it certain drawbacks and vulnerabilities. Sophisticated technologies could enable candidates to cheat on assessments, misrepresent abilities and potential hiring mistakes. This could lead to hiring candidates with falsifying skills or qualifications, which can cause a series of negative effects like:

  • Reduced work quality: The work output might be sub-par if a candidate doesn’t genuinely possess the abilities they claimed to have.
  • Team disruptions: Other team members may have to pick up the slack, leading to resentment and decreased morale.
  • Rehiring costs: You might have to let go of such hires, resulting in additional costs for replacement.

Data privacy is another critical concern

Your company could be left exposed to significant risks if your AI recruiting software is not robust enough to protect sensitive employee information. The implications for an organization with insufficient data security could be severe such as:

  • Reputational damage: Breaches of sensitive employee data can damage your company’s reputation, making it harder to attract clients and talented employees in the future.
  • Legal consequences: Depending on the jurisdiction, you could face legal penalties, including hefty fines, for failing to protect sensitive data adequately.
  • Loss of trust: A data breach could undermine employee trust in your organization, leading to decreased morale and productivity.
  • Financial costs: Besides potential legal penalties, companies could also face direct financial losses from a data breach, including the costs of investigation, recovery, and measures to prevent future breaches.
  • Operational disruption: Depending on the extent of the breach, normal business operations could be disrupted, causing additional financial losses and damage to the organization’s reputation.

Let’s talk about the potential for bias in AI recruiting software

Perhaps the most critical issue of all is the potential for unconscious bias. The potential for bias in AI recruiting software stems from the fact that these systems learn from the data they are trained on. If the training data contains biases – for example, if it reflects a history of preferentially hiring individuals of a certain age, gender, or ethnicity – the AI system can learn and replicate these biases.

Even with unbiased data, if the AI’s algorithms are not designed to account for bias, they can inadvertently create it. For instance, a hiring algorithm that prioritizes candidates with more years of experience may inadvertently discriminate against younger candidates or those who have taken career breaks, such as for child-rearing or health reasons.

This replication and possible amplification of human prejudices can result in discriminatory hiring practices. If your organization’s AI-enabled hiring system is found to be biased, you could face legal action, fines, and penalties. Diversity is proven to enhance creativity, problem-solving, and decision-making. In contrast, bias in hiring can lead to a homogenous workforce, so its absence would likely result in a less innovative and less competitive organization.

Also read: What We Learnt From Target’s Diversity And Inclusion Strategy

When used correctly, AI in recruitment can take your hiring to the next level

How to use AI during hiring freeze

How do you evaluate the appropriateness of using AI in hiring for your organization? Here are some strategies for navigating the AI revolution in HR. These steps include building support for AI adoption, identifying HR functions that can be integrated with AI, avoiding potential pitfalls of AI use in HR, collaborating with IT leaders, and so on.

Despite certain challenges, AI can significantly enhance tech recruitment processes when used effectively. AI-based recruitment tools can automate many manual recruiting tasks, such as resume screening and interview scheduling, freeing up time for recruiters to focus on more complex tasks. Furthermore, AI can improve the candidate’s experience by providing quick responses and personalized communications. The outcome is a more efficient, candidate-friendly process, which could lead to higher-quality hires.

Let’s look at several transformational possibilities chatbots can bring to human capital management for candidates and hiring teams. This includes automation and simplifying various tasks across domains such as recruiting, onboarding, core HR, absence management, benefits, performance management, and employee self-service resulting in the following:

For recruiters:

  • Improved efficiency and productivity: Chatbots can handle routine tasks like responding to common inquiries or arranging interviews. Thereby, providing you with more time to concentrate on tasks of strategic importance.
  • Enhanced candidate experience: With their ability to provide immediate responses, chatbots can make the application process more engaging and user-friendly.
  • Data and insights: Chatbots can collect and analyze data from your interactions with candidates. And provide valuable insights into candidate preferences and behavior.
  • Improved compliance: By consistently following predefined rules and guidelines, chatbots can help ensure that hiring processes are fair and compliant with relevant laws and regulations.
  • Cost saving: By automating routine tasks for recruiters, chatbots can help reduce the labor costs associated with hiring.

Also read: 5 Steps To Create A Remote-First Candidate Experience In Recruitment

How FaceCode Can Help Improve Your Candidate Experience | AI in recruitment

For candidates:

Additionally, candidates can leverage these AI-powered chatbots in a dialog flow manner to carry out various tasks. These tasks include the following:

  • Personalized greetings: By using a candidate’s name and other personal information, chatbots can create a friendly, personalized experience.
  • Job search: They can help candidates search for jobs based on specific criteria.
  • Create a candidate profile: These AI-powered chatbots can guide candidates through the process of creating a profile. Thus, making it easier for them to apply for jobs.
  • Upload resume: Chatbots can instruct candidates on uploading their resume, eliminating potential confusion.
  • Apply for a job: They can streamline the application process, making it easier and faster for candidates to apply for jobs.
  • Check application status: Chatbots can provide real-time updates on a candidate’s application status.
  • Schedule interviews: They can match candidate and interviewer availability to schedule interviews, simplifying the process.

For hiring managers:

These can also be utilized by your tech hiring teams for various purposes, such as:

  • Create requisition: Chatbots can guide hiring managers through the process of creating a job requisition.
  • Create offers: They can assist in generating job offers, ensuring all necessary information is included.
  • Access requisition and offers: Using chatbots can provide hiring managers with easy access to job requisitions and offers.
  • Check on onboarding tasks: Chatbots can help track onboarding tasks, ensuring nothing is missed.

Other AI recruiting technologies can also enhance the hiring process for candidates and hiring teams in the following ways:

For candidates:

  1. Tailor-made resumes and cover letters using generative AI: Generative AI can help candidates create custom resumes and cover letters, increasing their chances of standing out.
  2. Simplifying the application process: AI-powered recruiting tools can simplify the application process, allowing candidates to apply for jobs with just a few clicks.
  3. Provide similar job recommendations: AI can analyze candidates’ skills, experiences, and preferences to recommend similar jobs they might be interested in.

For recruiters:

  • Find the best candidate: AI algorithms can analyze large amounts of data to help you identify the candidates most likely to succeed in a given role.
  • Extract key skills from candidate job applications: Save a significant amount of time and effort by using AI-based recruiting software to quickly analyze job applications to identify key skills, thereby, speeding up the screening process.
  • Take feedback from rejected candidates & share similar job recommendations: AI can collect feedback from rejected candidates for you to improve future hiring processes and recommend other suitable roles to the candidate.

These enhancements not only streamline the hiring process but also improve the quality of hires, reduce hiring biases, and improve the experience for everyone involved. The use of AI in hiring can indeed take it to the next level.

Where is AI in recruitment headed?

AI can dramatically reshape the recruitment landscape with the following key advancements:

1. Blockchain-based background verification:

Blockchain technology, renowned for its secure, transparent, and immutable nature, can revolutionize background checks. This process which can take anywhere from between a day to several weeks today for a single recruiter to do can be completed within a few clicks resulting in:

  • Streamlined screening process: Blockchain can store, manage, and share candidates’ credentials and work histories. Thereby speeding up the verification and screening process. This approach eliminates the need for manual background checks. And leads to freeing up a good amount of time for you to focus on more important tasks.
  • Enhanced trust and transparency: With blockchain, candidates, and employers can trust the validity of the information shared due to the nature of the technology. The cryptographic protection of blockchain ensures the data is tamper-proof, and decentralization provides transparency.
  • Improved data accuracy and reliability: Since the blockchain ledger is immutable, it enhances the accuracy and reliability of the data stored. This can minimize the risks associated with false information on candidates’ resumes.
  • Faster onboarding: A swift and reliable verification process means candidates can be onboarded more quickly. Thereby, improving the candidate experience and reducing the time-to-hire.
  • Expanded talent pool: With blockchain, it’s easier and quicker to verify the credentials of candidates globally, thereby widening the potential talent pool.

2. Immersive experiences using virtual reality (VR):

VR can provide immersive experiences that enhance various aspects of the tech recruitment process:

  • Interactive job previews: VR can allow potential candidates to virtually “experience” a day i.e., life at your company. This provides a more accurate and engaging job preview than traditional job descriptions.
  • Virtual interviews and assessments: You can use VR to conduct virtual interviews or assessments. You can also evaluate candidates in a more interactive and immersive setting. This can be particularly useful for roles that require specific spatial or technical skills.
  • Virtual onboarding programs: New hires can take a virtual tour of the office, meet their colleagues, and get acquainted with their tasks, all before their first day. This can significantly enhance the onboarding experience and help new hires feel more prepared.
  • Immersive learning experiences: VR can provide realistic, immersive learning experiences for job-specific training or to enhance soft skills. These could be used during the recruitment process or for ongoing employee development.

Also read: 6 Strategies To Enhance Candidate Engagement In Tech Hiring (+ 3 Unique Examples)

AI + Recruiters: It’s all about the balance!

To summarize, AI in recruitment is a double-edged sword, carrying both promise and potential problems. The key lies in how recruiters use this technology, leveraging its benefits while vigilantly managing its risks. AI isn’t likely to replace recruiters or HR teams in the near future. Instead, you should leverage this tool to positively impact the entire hiring lifecycle.

With the right balance and careful management, AI can streamline hiring processes. It can create better candidate experiences, and ultimately lead to better recruitment decisions. Recruiters should continually experiment with and explore generative AI. To devise creative solutions, resulting in more successful hiring and the perfect fit for every open role.

Looking For A Mettl Alternative? Let’s Talk About HackerEarth

“Every hire is an investment for a company. A good hire will give you a higher ROI; if it is a bad hire, it will cost you a lot of time and money.”

Especially in tech hiring!

An effective tech recruitment process helps you attract the best talents, reduce hiring costs, and enhance company culture and reputation.

Businesses increasingly depend on technical knowledge to compete in today’s fast-paced, technologically driven world. Online platforms that provide technical recruiting solutions have popped up to assist companies in finding and employing top talent in response to this demand.

The two most well-known platforms in this field are HackerEarth and Mettl. To help businesses make wise choices for their technical employment requirements, we will compare these two platforms’ features, benefits, and limitations in this article.

This comparison of Mettl alternative, HackerEarth and Mettl itself, will offer helpful information to help you make the best decision, whether you’re a small company trying to expand your tech staff or a massive organization needing a simplified recruiting process.

HackerEarth

HackerEarth is based in San Francisco, USA, and offers enterprise software to aid companies with technical recruitment. Its services include remote video interviewing and technical skill assessments that are commonly used by organizations.

HackerEarth also provides a platform for developers to participate in coding challenges and hackathons. In addition, it provides tools for technical hiring such as coding tests, online interviews, and applicant management features. The hiring solutions provided by HackerEarth aid companies assess potential employees’ technical aptitude and select the best applicants for their specialized positions.

Mettl

Mettl, on the other hand, offers a range of assessment solutions for various industries, including IT, banking, healthcare, and retail. It provides online tests for coding, linguistic ability, and cognitive skills. The tests offered by Mettl assist employers find the best applicants for open positions and make data-driven recruiting choices. Additionally, Mettl provides solutions for personnel management and staff training and development.

Why should you go for HackerEarth over Mercer Mettl?

Here's why HackerEarth is a great Mettl Alternative!

Because HackerEarth makes technical recruiting easy and fast, you must consider HackerEarth for technical competence evaluations and remote video interviews. It goes above and beyond to provide you with a full range of functions and guarantee the effectiveness of the questions in the database. Moreover, it is user-friendly and offers fantastic testing opportunities.

The coding assessments by HackerEarth guarantee the lowest time consumption and maximum efficiency. It provides a question bank of more than 17,000 coding-related questions and automated test development so that you can choose test questions as per the job role.

As a tech recruiter, you may need a clear understanding of a candidate’s skills. With HackerEarth’s code replay capability and insight-rich reporting on a developer’s performance, you can hire the right resource for your company.

Additionally, HackerEarth provides a more in-depth examination of your recruiting process so you can continuously enhance your coding exams and develop a hiring procedure that leads the industry.

HackerEarth and Mercer Mettl are the two well-known online tech assessment platforms that provide tools for managing and performing online examinations. We will examine the major areas where HackerEarth outperforms Mettl, thereby proving to be a great alternative to Mettl, in this comparison.

Also read: What Makes HackerEarth The Tech Behind Great Tech Teams

HackerEarth Vs Mettl

Features and functionality

HackerEarth believes in upgrading itself and providing the most effortless navigation and solutions to recruiters and candidates.

HackerEarth provides various tools and capabilities to create and administer online tests, such as programming tests, multiple-choice questions, coding challenges, and more. The software also has remote proctoring, automatic evaluation, and plagiarism detection tools (like detecting the use of ChatGPT in coding assessments). On the other side, Mettl offers comparable functionality but has restricted capabilities for coding challenges and evaluations.

Test creation and administration

HackerEarth: It has a user-friendly interface that is simple to use and navigate. It makes it easy for recruiters to handle evaluations without zero technical know-how. The HackerEarth coding platform is also quite flexible and offers a variety of pre-built exams, including coding tests, aptitude tests, and domain-specific examinations. It has a rich library of 17,000+ questions across 900+ skills, which is fully accessible by the hiring team. Additionally, it allows you to create custom questions yourself or use the available question libraries.

Also read: How To Create An Automated Assessment With HackerEarth

Mettl: It can be challenging for a hiring manager to use Mettl efficiently since Mettl provides limited assessment and question libraries. Also, their team creates the test for them rather than giving access to hiring managers. This results in a higher turnaround time and reduces test customization possibilities since the request has to go back to the team, they have to make the changes, and so forth.

Reporting and analytics

HackerEarth: You may assess applicant performance and pinpoint areas for improvement with the help of HackerEarth’s full reporting and analytics tools. Its personalized dashboards, visualizations, and data exports simplify evaluating assessment results and real-time insights.

Most importantly, HackerEarth includes code quality scores in candidate performance reports, which lets you get a deeper insight into a candidate’s capabilities and make the correct hiring decision. Additionally, HackerEarth provides a health score index for each question in the library to help you add more accuracy to your assessments. The health score is based on parameters like degree of difficulty, choice of the programming language used, number of attempts over the past year, and so on.

Mettl: Mettl online assessment tool provides reporting and analytics. However, there may be only a few customization choices available. Also, Mettle does not provide code quality assurance which means hiring managers have to check the whole code manually. There is no option to leverage question-based analytics and Mettl does not include a health score index for its question library.

Adopting this platform may be challenging if you want highly customized reporting and analytics solutions.

Also read: HackerEarth Assessments + The Smart Browser: Formula For Bulletproof Tech Hiring

Security and data privacy

HackerEarth: The security and privacy of user data are top priorities at HackerEarth. The platform protects data in transit and at rest using industry-standard encryption. Additionally, all user data is kept in secure, constantly monitored data centers with stringent access controls.

Along with these security measures, HackerEarth also provides IP limitations, role-based access controls, and multi-factor authentication. These features ensure that all activity is recorded and audited and that only authorized users can access sensitive data.

HackerEarth complies with several data privacy laws, such as GDPR and CCPA. The protection of candidate data is ensured by this compliance, which also enables businesses to fulfill their legal and regulatory responsibilities.

Mettl: The security and data privacy features of Mettl might not be as strong as those of HackerEarth. The platform does not provide the same selection of security measures, such as IP limitations or multi-factor authentication. Although the business asserts that it complies with GDPR and other laws, it cannot offer the same amount of accountability and transparency as other platforms.

Even though both HackerEarth and Mettl include security and data privacy measures, the Mettle alternative, HackerEarth’s platform is made to be more thorough, open, and legal. By doing this, businesses can better guarantee candidate data’s security and ability to fulfill legal and regulatory requirements.

Pricing and support

HackerEarth: To meet the demands of businesses of all sizes, HackerEarth offers a variety of customizable pricing options. The platform provides yearly and multi-year contracts in addition to a pay-as-you-go basis. You can select the price plan that best suits their demands regarding employment and budget.

HackerEarth offers chat customer support around the clock. The platform also provides a thorough knowledge base and documentation to assist users in getting started and troubleshooting problems.

Mettl: The lack of price information on Mettl’s website might make it challenging for businesses to decide whether the platform fits their budget. The organization also does not have a pay-as-you-go option, which might be problematic.

Mettl offers phone and emails customer assistance. However, the business website lacks information on support availability or response times. This lack of transparency may be an issue if you need prompt and efficient help.

User experience

HackerEarth: The interface on HackerEarth is designed to be simple for both recruiters and job seekers. As a result of the platform’s numerous adjustable choices for test creation and administration, you may design exams specifically suited to a job role. Additionally, the platform provides a selection of question types and test templates, making it simple to build and take exams effectively.

In terms of the candidate experience, HackerEarth provides a user-friendly interface that makes navigating the testing procedure straightforward and intuitive for applicants. As a result of the platform’s real-time feedback and scoring, applicants may feel more motivated and engaged during the testing process. The platform also provides several customization choices, like branding and message, which may assist recruiters in giving prospects a more exciting and tailored experience.

Mettl: The platform is intended to have a steeper learning curve than others and be more technical. It makes it challenging to rapidly and effectively construct exams and can be difficult for applicants unfamiliar with the platform due to its complex interface.

Additionally, Mettl does not provide real-time feedback or scoring, which might deter applicants from participating and being motivated by the testing process.

Also read: 6 Strategies To Enhance Candidate Engagement In Tech Hiring (+ 3 Unique Examples)

User reviews and feedback

According to G2, HackerEarth and Mettl have 4.4 reviews out of 5. Users have also applauded HackerEarth’s customer service. Many agree that the staff members are friendly and quick to respond to any problems or queries. Overall, customer evaluations and feedback for HackerEarth point to the platform as simple to use. Both recruiters and applicants find it efficient.

Mettl has received mixed reviews from users, with some praising the platform for its features and functionality and others expressing frustration with its complex and technical interface.

Free ebook to help you choose between Mettl and Mettle alternative, HackerEarth

May the best “brand” win!

Recruiting and selecting the ideal candidate demands a significant investment of time, attention, and effort.

This is where tech recruiting platforms like HackerEarth and Mettl have got you covered. They help streamline the whole process.Both HackerEarth and Mettl provide a wide variety of advanced features and capabilities for tech hiring.

We think HackerEarth is the superior choice. Especially, when contrasting the two platforms in terms of their salient characteristics and functioning. But, we may be biased!

So don’t take our word for it. Sign up for a free trial and check out HackerEarth’s offerings for yourself!

HackerEarth Assessments + The Smart Browser: Formula For Bulletproof Tech Hiring

Let’s face it—cheating on tests is quite common. While technology has made a lot of things easier in tech recruiting, it has also left the field wide open to malpractice. A 2020 report by ICAI shows that 32% of undergraduate students have cheated in some form on an online test.

It’s human nature to want to bend the rules a little bit. Which begs the question, how do you stay on top of cheating, plagiarism, and other forms of malpractice during the assessment process?

How do you ensure that take-home assessments and remote interviews stay authentic and credible? By relying on enhanced virtual supervision, of course!

HackerEarth Assessments has always been one step ahead when it comes to remote proctoring which is able to capture the nuances of candidate plagiarism. The recent advancements in technology (think generative AI) needed more robust proctoring features, so we went ahead and built The HackerEarth Smart Browser to ensure our assessments remain as foolproof as ever.

Presenting to you, the latest HackerEarth proctoring fix - The Smart Browser

Our Smart Browser is the chocolatey version of a plain donut when compared to a regular web browser. It is extra effective and comes packed with additional remote proctoring capabilities to increase the quality of your screening assessments.

The chances of a candidate cheating on a HackerEarth technical assessment are virtually zero with the latest features! Spilling all our secrets to show you why -

1. Sealed-off testing environment makes proctoring simpler

Sealed-off testing environment makes proctoring simpler

To get started with using the Smart Browser, enable the Smart Browser setting as shown above. This setting is available under the test proctoring section on the test overview page.

As you can see, several other proctoring settings such as disabling copy-paste, restricting candidates to full-screen mode, and logout on leaving the test interface are selected automatically.Now, every candidate you invite to take the assessment will only be able to do so through the Smart Browser. Candidates are prompted to download the Smart Browser from the link shared in the test invite mail.When the candidate needs to click on the ‘start test’ button on the launch test screen, it opens in the Smart Browser. The browser also prompts the candidate to switch to full-screen mode. Now, all candidates need to do is sign in and attempt the test, as usual.
Also read: 6 Ways Candidates Try To Outsmart A Remote Proctored Assessment

2. Eagle-eyed online test monitoring leaves no room for error

Eagle-eyed online test monitoring with the smart browser leaves no room for errorOur AI-enabled Smart Browser takes frequent snapshots via the webcam, throughout the assessment. Consequently, it is impossible to copy-paste code or impersonate a candidate.The browser prevents the following candidate actions and facilitates thorough monitoring of the assessment:
  • Screensharing the test window
  • Keeping other applications open during the test
  • Resizing the test window
  • Taking screenshots of the test window
  • Recording the test window
  • Using malicious keystrokes
  • Viewing OS notifications
  • Running the test window within a virtual machine
  • Operating browser developer tools
Any candidate actions attempting to switch tabs with the intent to copy-paste or use a generative AI like ChatGPT are shown a warning and captured in the candidate report.HackerEarth’s latest proctoring fixes bulletproof our assessment platform, making it one of the most reliable and accurate sources of candidate hiring in the market today.
Also read: 4 Ways HackerEarth Flags The Use Of ChatGPT In Tech Hiring Assessments

Experience reliable assessments with the Smart Browser!

There you have it - our newest offering that preserves the integrity of coding assessments and enables skill-first hiring, all in one go. Recruiters and hiring managers, this is one feature that you can easily rely on and can be sure that every candidate’s test score is a result of their ability alone.Curious to try out the Smart Browser? Well, don’t take our word for it. Head over here to check it out for yourself!

We also love hearing from our customers so don’t hesitate to leave us any feedback you might have.

Until then, happy hiring!
View all

What is Headhunting In Recruitment?: Types &amp; How Does It Work?

In today’s fast-paced world, recruiting talent has become increasingly complicated. Technological advancements, high workforce expectations and a highly competitive market have pushed recruitment agencies to adopt innovative strategies for recruiting various types of talent. This article aims to explore one such recruitment strategy – headhunting.

What is Headhunting in recruitment?

In headhunting, companies or recruitment agencies identify, engage and hire highly skilled professionals to fill top positions in the respective companies. It is different from the traditional process in which candidates looking for job opportunities approach companies or recruitment agencies. In headhunting, executive headhunters, as recruiters are referred to, approach prospective candidates with the hiring company’s requirements and wait for them to respond. Executive headhunters generally look for passive candidates, those who work at crucial positions and are not on the lookout for new work opportunities. Besides, executive headhunters focus on filling critical, senior-level positions indispensable to companies. Depending on the nature of the operation, headhunting has three types. They are described later in this article. Before we move on to understand the types of headhunting, here is how the traditional recruitment process and headhunting are different.

How do headhunting and traditional recruitment differ from each other?

Headhunting is a type of recruitment process in which top-level managers and executives in similar positions are hired. Since these professionals are not on the lookout for jobs, headhunters have to thoroughly understand the hiring companies’ requirements and study the work profiles of potential candidates before creating a list.

In the traditional approach, there is a long list of candidates applying for jobs online and offline. Candidates approach recruiters for jobs. Apart from this primary difference, there are other factors that define the difference between these two schools of recruitment.

AspectHeadhuntingTraditional RecruitmentCandidate TypePrimarily passive candidateActive job seekersApproachFocused on specific high-level rolesBroader; includes various levelsScopeproactive outreachReactive: candidates applyCostGenerally more expensive due to expertise requiredTypically lower costsControlManaged by headhuntersManaged internally by HR teams

All the above parameters will help you to understand how headhunting differs from traditional recruitment methods, better.

Types of headhunting in recruitment

Direct headhunting: In direct recruitment, hiring teams reach out to potential candidates through personal communication. Companies conduct direct headhunting in-house, without outsourcing the process to hiring recruitment agencies. Very few businesses conduct this type of recruitment for top jobs as it involves extensive screening across networks outside the company’s expanse.

Indirect headhunting: This method involves recruiters getting in touch with their prospective candidates through indirect modes of communication such as email and phone calls. Indirect headhunting is less intrusive and allows candidates to respond at their convenience.Third-party recruitment: Companies approach external recruitment agencies or executive headhunters to recruit highly skilled professionals for top positions. This method often leverages the company’s extensive contact network and expertise in niche industries.

How does headhunting work?

Finding highly skilled professionals to fill critical positions can be tricky if there is no system for it. Expert executive headhunters employ recruitment software to conduct headhunting efficiently as it facilitates a seamless recruitment process for executive headhunters. Most software is AI-powered and expedites processes like candidate sourcing, interactions with prospective professionals and upkeep of communication history. This makes the process of executive search in recruitment a little bit easier. Apart from using software to recruit executives, here are the various stages of finding high-calibre executives through headhunting.

Identifying the role

Once there is a vacancy for a top job, one of the top executives like a CEO, director or the head of the company, reach out to the concerned personnel with their requirements. Depending on how large a company is, they may choose to headhunt with the help of an external recruiting agency or conduct it in-house. Generally, the task is assigned to external recruitment agencies specializing in headhunting. Executive headhunters possess a database of highly qualified professionals who work in crucial positions in some of the best companies. This makes them the top choice of conglomerates looking to hire some of the best talents in the industry.

Defining the job

Once an executive headhunter or a recruiting agency is finalized, companies conduct meetings to discuss the nature of the role, how the company works, the management hierarchy among other important aspects of the job. Headhunters are expected to understand these points thoroughly and establish a clear understanding of their expectations and goals.

Candidate identification and sourcing

Headhunters analyse and understand the requirements of their clients and begin creating a pool of suitable candidates from their database. The professionals are shortlisted after conducting extensive research of job profiles, number of years of industry experience, professional networks and online platforms.

Approaching candidates

Once the potential candidates have been identified and shortlisted, headhunters move on to get in touch with them discreetly through various communication channels. As such candidates are already working at top level positions at other companies, executive headhunters have to be low-key while doing so.

Assessment and Evaluation

In this next step, extensive screening and evaluation of candidates is conducted to determine their suitability for the advertised position.

Interviews and negotiations

Compensation is a major topic of discussion among recruiters and prospective candidates. A lot of deliberation and negotiation goes on between the hiring organization and the selected executives which is facilitated by the headhunters.

Finalizing the hire

Things come to a close once the suitable candidates accept the job offer. On accepting the offer letter, headhunters help finalize the hiring process to ensure a smooth transition.

The steps listed above form the blueprint for a typical headhunting process. Headhunting has been crucial in helping companies hire the right people for crucial positions that come with great responsibility. However, all systems have a set of challenges no matter how perfect their working algorithm is. Here are a few challenges that talent acquisition agencies face while headhunting.

Common challenges in headhunting

Despite its advantages, headhunting also presents certain challenges:

Cost Implications: Engaging headhunters can be more expensive than traditional recruitment methods due to their specialized skills and services.

Time-Consuming Process: While headhunting can be efficient, finding the right candidate for senior positions may still take time due to thorough evaluation processes.

Market Competition: The competition for top talent is fierce; organizations must present compelling offers to attract passive candidates away from their current roles.

Although the above mentioned factors can pose challenges in the headhunting process, there are more upsides than there are downsides to it. Here is how headhunting has helped revolutionize the recruitment of high-profile candidates.

Advantages of Headhunting

Headhunting offers several advantages over traditional recruitment methods:

Access to Passive Candidates: By targeting individuals who are not actively seeking new employment, organisations can access a broader pool of highly skilled professionals.

Confidentiality: The discreet nature of headhunting protects both candidates’ current employment situations and the hiring organisation’s strategic interests.

Customized Search: Headhunters tailor their search based on the specific needs of the organization, ensuring a better fit between candidates and company culture.

Industry Expertise: Many headhunters specialise in particular sectors, providing valuable insights into market dynamics and candidate qualifications.

Conclusion

Although headhunting can be costly and time-consuming, it is one of the most effective ways of finding good candidates for top jobs. Executive headhunters face several challenges maintaining the g discreetness while getting in touch with prospective clients. As organizations navigate increasingly competitive markets, understanding the nuances of headhunting becomes vital for effective recruitment strategies. To keep up with the technological advancements, it is better to optimise your hiring process by employing online recruitment software like HackerEarth, which enables companies to conduct multiple interviews and evaluation tests online, thus improving candidate experience. By collaborating with skilled headhunters who possess industry expertise and insights into market trends, companies can enhance their chances of securing high-caliber professionals who drive success in their respective fields.

A Comprehensive Guide to External Sources of Recruitment

The job industry is not the same as it was 30 years ago. Progresses in AI and automation have created a new work culture that demands highly skilled professionals who drive innovation and work efficiently. This has led to an increase in the number of companies reaching out to external sources of recruitment for hiring talent. Over the years, we have seen several job aggregators optimise their algorithms to suit the rising demand for talent in the market and new players entering the talent acquisition industry. This article will tell you all about how external sources of recruitment help companies scout some of the best candidates in the industry, the importance of external recruitment in organizations across the globe and how it can be leveraged to find talent effectively.

Understanding external sources of recruitment

External sources refer to recruitment agencies, online job portals, job fairs, professional associations and any other organizations that facilitate seamless recruitment. When companies employ external recruitment sources, they access a wider pool of talent which helps them find the right candidates much faster than hiring people in-house. They save both time and effort in the recruitment process.

Online job portals

Online resume aggregators like LinkedIn, Naukri, Indeed, Shine, etc. contain a large database of prospective candidates. With the advent of AI, online external sources of recruitment have optimised their algorithms to show the right jobs to the right candidates. Once companies figure out how to utilise job portals for recruitment, they can expedite their hiring process efficiently.

Social Media

Ours is a generation that thrives on social media. To boost my IG presence, I have explored various strategies, from getting paid Instagram users to optimizing post timing and engaging with my audience consistently. Platforms like FB an IG have been optimized to serve job seekers and recruiters alike. The algorithms of social media platforms like Facebook and Instagram have been optimised to serve job seekers and recruiters alike. Leveraging them to post well-placed ads for job listings is another way to implement external sources of recruitment strategies.

Employee Referrals

Referrals are another great external source of recruitment for hiring teams. Encouraging employees to refer their friends and acquaintances for vacancies enables companies to access highly skilled candidates faster.

Campus Recruitment

Hiring freshers from campus allows companies to train and harness new talent. Campus recruitment drives are a great external recruitment resource where hiring managers can expedite the hiring process by conducting screening processes in short periods.

Recruitment Agencies

Companies who are looking to fill specific positions with highly skilled and experienced candidates approach external recruitment agencies or executive headhunters to do so. These agencies are well-equipped to look for suitable candidates and they also undertake the task of identifying, screening and recruiting such people.

Job Fairs

This is a win-win situation for job seekers and hiring teams. Job fairs allow potential candidates to understand how specific companies work while allowing hiring managers to scout for potential candidates and proceed with the hiring process if possible.

Importance of External Recruitment

The role of recruitment agencies in talent acquisition is of paramount importance. They possess the necessary resources to help companies find the right candidates and facilitate a seamless hiring process through their internal system. Here is how external sources of recruitment benefit companies.

Diversity of Skill Sets

External recruitment resources are a great way for companies to hire candidates with diverse professional backgrounds. They possess industry-relevant skills which can be put to good use in this highly competitive market.

Fresh Perspectives

Candidates hired through external recruitment resources come from varied backgrounds. This helps them drive innovation and run things a little differently, thus bringing in a fresh approach to any project they undertake.

Access to Specialized Talent

Companies cannot hire anyone to fill critical roles that require highly qualified executives. This task is assigned to executive headhunters who specialize in identifying and screening high-calibre candidates with the right amount of industry experience. Huge conglomerates and companies seek special talent through external recruiters who have carved a niche for themselves.

Now that you have learnt the different ways in which leveraging external sources of recruitment benefits companies, let’s take a look at some of the best practices of external recruitment to understand how to effectively use their resources.

Best Practices for Effective External Recruitment

Identifying, reaching out to and screening the right candidates requires a robust working system. Every system works efficiently if a few best practices are implemented. For example, hiring through social media platforms requires companies to provide details about their working environment, how the job is relevant to their audience and well-positioned advertisements. The same applies to the other external sources of recruitment. Here is how you can optimise the system to ensure an effective recruitment process.

Craft Clear and Compelling Job Descriptions

Detail Responsibilities: Clearly outline the key responsibilities and expectations for the role.

Highlight Company Culture: Include information about the company’s mission, values, and growth opportunities to attract candidates who align with your organizational culture.

Leverage Multiple Recruitment Channels

Diversify Sources: Use a mix of job boards, social media platforms, recruitment agencies, and networking events to maximize reach. Relying on a single source can limit your candidate pool.

Utilize Industry-Specific Platforms: In addition to general job boards, consider niche job sites that cater to specific industries or skill sets

Streamline the Application Process

Simplify Applications: Ensure that the application process is user-friendly. Lengthy or complicated forms can deter potential candidates from applying.

Mobile Optimization: Many candidates use mobile devices to apply for jobs, so ensure your application process is mobile-friendly.

Engage in Proactive Sourcing

Reach Out to Passive Candidates: Actively seek out candidates who may not be actively looking for a job but could be a great fit for your organization. Use LinkedIn and other professional networks for this purpose.

Maintain a Talent Pool: Keep a database of previous applicants and strong candidates for future openings, allowing you to reach out when new roles become available.

Utilize Social Media Effectively

Promote Job Openings: Use social media platforms like LinkedIn, Facebook, and Twitter to share job postings and engage with potential candidates. This approach can also enhance your employer brand

Conduct Background Checks: There are several ways of learning about potential candidates. Checking out candidate profiles on job boards like LinkedIn or social media platforms can give companies a better understanding of their potential candidates, thus confirming whether they are the right fit for the organization.

Implement Data-Driven Recruitment

Analyze Recruitment Metrics: Track key metrics such as time-to-hire, cost-per-hire, and source effectiveness. This data can help refine your recruitment strategies over time. Using external hiring software like HackeEarth can streamline the recruitment process, thus ensuring quality hires without having to indulge internal resources for the same.

Use Predictive Analytics: In this age of fast paced internet, everybody makes data-driven decisions. Using predictive analytics to study employee data will help companies predict future trends, thus facilitating a productive hiring process.

Conclusion

External sources of recruitment play a very important role in an organization’s talent acquisition strategy. By employing various channels of recruitment such as social media, employee referrals and campus recruitment drives, companies can effectively carry out their hiring processes. AI-based recruitment management systems also help in the process. Implementing best practices in external recruitment will enable organizations to enhance their hiring processes effectively while meeting their strategic goals.

Progressive Pre-Employment Assessment - A Complete Guide

The Progressive Pre-Employment Assessment is a crucial step in the hiring process, as it evaluates candidates through various dimensions including cognitive abilities, personality traits, and role-specific skills.

While employers and recruiters have this in the palm of their hand, candidates who master it will successfully navigate the assessment and have a higher chance of landing that dream job. But what does it entail in the first place?

Candidates can expect to undergo tests that assess verbal, numerical, and work style capabilities, as well as a personality assessment. Hence, understanding the structure and purpose of the Progressive Pre-Employment Assessment can give candidates a competitive edge. But before one tackles online tests, we must first dissect what this assessment is and what it consists of.

The evolution of pre-employment assessments

Pre-employment assessments have undergone significant changes over the decades, from rudimentary tests to sophisticated, modern evaluations. Let’s put the two side by side.

  • Traditional methods:

    Initially, pre-employment assessments focused on basic skills and educational qualifications. These paper-based tests primarily assessed cognitive and verbal abilities, without any conclusions about the candidates’ output in very specific situations.

  • Modern techniques:

    Today, online assessments are prevalent, evaluating a variety of dimensions, including cognitive skills, personality traits, and behavioral evaluations. These tools offer a more comprehensive view of a candidate's job performance potential, while, at the same time, saving precious time for both parties involved.

In today’s competitive job market, progressive pre-employment assessments play a crucial as they not only measure technical skills and knowledge but also provide insights into a candidate's ethical bias, cultural fit, and communication skills.

Likewise, assessment tests have evolved to include situational judgment tests and culture fit analyses, which are pivotal in assessing the suitability of a candidate for specific roles. And this isn’t just in terms of skillsets—they help in identifying candidates who align well with the company's values and working environment.

This is mainly for the tests’ ability to accurately gauge a candidate's interpersonal skills and emotional intelligence, which are essential for roles that require teamwork and client interactions.

What are progressive pre-employment assessments?

Progressive pre-employment assessments are structured evaluations designed to judge a candidate’s abilities and fit for a role at Progressive Insurance. Unlike traditional aptitude tests, these assessments encompass various elements such as cognitive abilities, situational judgments, and personality traits.

These tests typically include verbal and numerical reasoning sections, as well as work style assessments that gauge behavioral tendencies. Through this merger of multiple dimensions, Progressive seeks to understand not just the skills and knowledge of the candidate, but also their ethical perspectives and communication skills.

Components of a progressive assessment strategy

What sets progressive assessments apart? Well, as most employers just focus on the basic credentials and competencies, the comprehensive assessment strategy at Progressive includes several key components:

  1. Cognitive evaluations: These tests measure candidates' logical reasoning and problem-solving capabilities through verbal, numerical, and abstract reasoning questions.
  2. Personality assessments: These tests evaluate traits and tendencies to understand how a candidate might behave in various workplace scenarios. They aim to provide insight into their ethical bias and interpersonal skills.
  3. Behavioral evaluations: These sections analyze how candidates might act in specific situations, ensuring a good cultural fit and alignment with Progressive's values.
  4. Role-specific skills tests: These assessments focus on the specialized skills required for the position, ensuring the candidate has the necessary technical knowledge and expertise.

Implementing progressive assessments

Successful implementation of Progressive Assessments in the hiring process requires designing an effective assessment process and following best practices for administration. This ensures accuracy, better data security, and reliable decision-making. In particular, the implementation hinges on the feasibility of the original design.

Step 1 --- Designing the assessment process

Designing an effective Progressive Assessment involves understanding the specific needs of the role and the company's approach to hiring. Each test component — verbal, numerical, and work style — must align with the desired skills and personality traits for the role.

HR teams need to define clear objectives for each assessment section. This includes establishing what each part aims to evaluate, like the problem-solving or personality assessments. Incorporating legal and policy guidelines ensures the assessments are fair and non-discriminatory, which is crucial for avoiding legal issues.

Likewise, everaging online assessment tests provides flexibility and efficiency. These tests allow candidates to complete them remotely, easing logistics and scheduling concerns. Ensuring security is also essential, and implementing testing and other recruitment tools can help enhance data security and accuracy.

Step 2 --- Best practices for assessment administration

Administering assessments effectively revolves around consistency and fairness. Establish structured guidelines for the administration process to ensure each candidate undergoes the same conditions, promoting reliability. This includes standardizing the timing, environment, and instructions for all assessments.

Training HR representatives is vital. They should be well-versed in handling the assessments, from initial candidate interactions to evaluating the results. Regular training updates ensure the team remains knowledgeable about best practices and any new tools used in the assessment process.

Administering assessments also involves maintaining better data security and accuracy. This is achieved by utilizing secure online platforms and ensuring that only authorized personnel have access to sensitive data. Leveraging top API penetration testing tools is one approach to securing candidate data and preserving the integrity of the assessment process.

Implementing consistent feedback mechanisms for candidates can also improve the process. Providing insights on their performance helps candidates understand their strengths and areas for growth, which reflects positively on the company’s commitment to candidate experience.

Benefits of progressive assessments

Progressive assessments offer significant advantages in the hiring process, such as improving the accuracy of hiring decisions and enhancing the overall candidate experience. These benefits help companies find better-fitting candidates and reduce turnover rates.

1. Improved hiring accuracy

Progressive pre-employment assessments allow companies to evaluate candidates more comprehensively. By assessing personality traits, cognitive abilities, and ethical biases, employers can identify individuals who align with the company’s values and have the necessary skills for the job.

For example, personality assessments can pinpoint traits like empathy, communication, and problem-solving abilities. This helps employers select candidates who are not only qualified but also fit well within the team. Evaluating these qualities ensures that new hires can thrive in customer service roles where empathy and effective communication are crucial.

Moreover, using tools like the DDI Adaptive Reasoning Test helps to simulate real job tasks. This gives employers deeper insights into a candidate's capability to handle job-specific challenges. As a result, the company is more likely to experience lower turnover rates due to better candidate-job fit.

2. Enhanced candidate experience

A well-structured assessment process can significantly enhance the candidate experience. Clear instructions,fair testing procedures, and timely feedback create a positive impression of the company. Candidates appreciate transparency and feel valued when the process is designed with their experience in mind.

Implementing assessments that reflect actual job roles and responsibilities gives candidates a realistic preview of the job. This reduces later dissatisfaction and turnover. Additionally, personality assessments that highlight traits such as confidence and empathy provide a more engaging candidate experience.

Companies can also strengthen their employer brand by showcasing their commitment to a fair and comprehensive hiring process. Providing resources like practice tests helps candidates feel better prepared and less anxious about the assessment, leading to a more positive perception of the company.

Common pitfalls in progressive assessments

Candidates often struggle with the cognitive abilities section, which requires strong analytical skills and problem-solving capabilities. The situational judgment tests can also be tricky as they assess empathy, decision-making, and customer service scenarios. Personality assessments can pose challenges as well, especially for those unsure how to present their personality traits aligned with the job role.

A significant issue is also misinterpretation of the test's format and expectations. Many find it daunting to navigate through various sections, such as verbal, numerical, and work style assessments. Lastly, some candidates might overlook the legal nuances of personality assessments or document redaction protocols, leading to compliance issues.

Strategies to overcome challenges

To tackle cognitive abilities assessments, candidates should engage in consistent practice with sample questions and mock tests. This helps enhance their analytical and problem-solving skills. For situational judgment tests, it is essential to practice empathy and customer service scenarios to develop a better understanding of role-specific challenges.

In personality assessments, being honest while demonstrating relevant personality traits like being a team player is crucial. Seeking guidance from study materials such as Job Test Prep can provide a realistic testing environment.

Understanding legal considerations, such as those around document redaction, is important for compliance. Utilizing a document redaction SDK can ensure adherence to required policies. Familiarity with each section's format will aid in navigating the assessments confidently and effectively.

Trends and innovations in employee assessments

There is a growing emphasis on AI-powered assessments —these tools analyze vast amounts of data to predict a candidate's job performance, ensuring a more objective and efficient selection process.



Personality assessments are evolving to include metrics like empathy and communication skills, which are crucial for roles in customer service and other people-centric positions.

Additionally, gamified assessments, which make the evaluation process engaging, are gaining popularity. They not only assess problem-solving skills but also gauge how candidates perform under pressure.

Organizations can prepare for the future by integrating cutting-edge technologies into their hiring processes. Investing in training for evaluators to accurately interpret new assessment metrics is crucial. This involves

understanding how to measure soft skills such as empathy and effective communication.

Moreover, companies should stay updated on legal requirements to maintain compliance and ensure fair assessment practices.

Encouraging candidates to focus on developing their personality traits, such as being team players and showing confidence, can also better prepare them for progressive assessments that look beyond technical skills.

The strategic value of progressive assessments

Progressive pre-employment assessments rigorously evaluate candidates on multiple fronts, including cognitive abilities, situational judgment, personality fit, and role-specific skills. This multifaceted approach not only helps in identifying the best match for specific roles but also reduces the risk of bad hires.

By investing in these assessments, companies can significantly enhance their recruitment processes. Consistent use of these tools leads to more informed decision-making, reducing turnover rates and ensuring employee retention.



Appropriate preparation and implementation of these assessments can streamline the hiring pipeline, saving time and resources. Furthermore, this approach bolsters team performance and aligns employee roles with their strengths, promoting a culture of efficiency and productivity. While Progressive is far from the only company using this approach, they’ve set a standard in terms of looking at candidates holistically and making sure they’re truly ready for the job.

Frequently Asked Questions

This section covers common inquiries related to the Progressive Pre-Employment Assessments, including differences from psychometric tests, benefits for small businesses, legal considerations, and the role of technology.

How do progressive assessments differ from psychometric testing?

Progressive assessments typically examine a candidate's ethical bias and personality traits. In contrast, psychometric tests focus on cognitive abilities and personality dimensions. The Progressive Pre-Employment Assessment includes verbal, numerical, and work style components, offering a broader evaluation spectrum.

Can small businesses benefit from implementing progressive assessment strategies?

Small businesses can gain significant advantages from adopting progressive assessment strategies. These assessments help identify candidates that align closely with the company’s values and culture, reducing turnover rates. Additionally, they provide insights into a candidate's ethical stance and work style, which are crucial for cohesive team dynamics.

What are the legal considerations when using pre-employment assessments?

Legal considerations include ensuring compliance with equal employment opportunity laws and avoiding discrimination based on race, gender, or disability. It is essential to validate the assessment tools and ensure they are scientifically proven to be fair. Companies must also maintain transparency about the purpose and usage of the assessments.

How can technology enhance the effectiveness of progressive assessments?

Technology can streamline the assessment process by allowing candidates to complete the tests remotely. Advanced analytics help in the accurate interpretation of results, ensuring a better match between the candidate and the job role. Many platforms offer practice tests that mirror the actual assessment, aiding in preparation and reducing test anxiety.

View all

Stay Informed with the HackerEarth Blog

Explore industry insights, expert opinions, and the latest trends in technology, hiring, and innovation.